首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   73篇
  免费   22篇
  2021年   3篇
  2018年   1篇
  2016年   3篇
  2015年   4篇
  2014年   2篇
  2013年   4篇
  2012年   4篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   3篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   8篇
  1999年   7篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   2篇
  1980年   1篇
  1975年   1篇
  1966年   1篇
  1963年   1篇
  1961年   1篇
排序方式: 共有95条查询结果,搜索用时 15 毫秒
91.
The properties of glutamate-activated excitatory currents on the gm6 muscle from the foregut of the spiny lobsters Panulirus argus and interruptus and the crab Cancer borealis were examined using either noise analysis, analysis of synaptic current decays, or slow iontophoretic currents. The properties of acetylcholine currents activated in nonjunctional regions of the gm6 muscle were also examined. At 12 degrees C and -80 mV, the predominant time constant of power spectra from glutamate-activated current noise was approximately 7 ms and the elementary conductance was approximately 34 pS. At 12 degrees C and -80 mV, the predominant time constant of acetylcholine- activated channels was approximately 11 ms with a conductance of approximately 12 pS. Focally recorded glutamatergic extracellular synaptic currents on the gm6 muscle decayed with time constants of approximately 7-8 ms at 12 degrees C and -80 mV. The decay time constant was prolonged e-fold about every 225-mV hyperpolarization in membrane potential. The Q10 of the time constant of the synaptic current decay was approximately 2.6. The voltage dependence of the steady-state conductance increase activated by iontophoretic application of glutamate has the opposite direction of the steady-state conductance activated by cholinergic agonists when compared on the gm6 muscles. The glutamate-activated conductance increase is diminished with hyperpolarization. The properties of the marine crustacean glutamate channels are discussed in relation to glutamate channels in other organisms and to the acetylcholine channels found on the gm6 muscle and the gm1 muscle of the decapod foregut (Lingle and Auerbach, 1983).  相似文献   
92.
Rat and mouse adrenal medullary chromaffin cells (CCs) express an inactivating BK current. This inactivation is thought to arise from the assembly of up to four β2 auxiliary subunits (encoded by the kcnmb2 gene) with a tetramer of pore-forming Slo1 α subunits. Although the physiological consequences of inactivation remain unclear, differences in depolarization-evoked firing among CCs have been proposed to arise from the ability of β2 subunits to shift the range of BK channel activation. To investigate the role of BK channels containing β2 subunits, we generated mice in which the gene encoding β2 was deleted (β2 knockout [KO]). Comparison of proteins from wild-type (WT) and β2 KO mice allowed unambiguous demonstration of the presence of β2 subunit in various tissues and its coassembly with the Slo1 α subunit. We compared current properties and cell firing properties of WT and β2 KO CCs in slices and found that β2 KO abolished inactivation, slowed action potential (AP) repolarization, and, during constant current injection, decreased AP firing. These results support the idea that the β2-mediated shift of the BK channel activation range affects repetitive firing and AP properties. Unexpectedly, CCs from β2 KO mice show an increased tendency toward spontaneous burst firing, suggesting that the particular properties of BK channels in the absence of β2 subunits may predispose to burst firing.  相似文献   
93.
Synchronization of oocyte maturation in vitro has been shown to produce higher in vitro fertilization (IVF) rates than those observed in oocytes matured in vitro without synchronization. However, the increased IVF rates never exceeded those observed in oocytes matured in vivo without synchronization. This study was therefore designed to define the effect of in vivo synchronization of oocyte maturation on IVF rates. Mice were superovulated and orally treated with 7.5 mg cilostazol (CLZ), a phosphodiesterase 3A (PDE3A) inhibitor, to induce ovulation of immature oocytes at different stages depending on frequency and time of administration of CLZ. Mice treated with CLZ ovulated germinal vesicle (GV) or metaphase I (MI) oocytes that underwent maturation in vitro or in vivo (i.e. in the oviduct) followed by IVF. Superovulated control mice ovulated mature oocytes that underwent IVF directly upon collection. Ovulated MI oocytes matured in vitro or in vivo had similar maturation rates but significantly higher IVF rates, 2–4 cell embryos, than those observed in control oocytes. Ovulated GV oocytes matured in vitro showed similar maturation rates but significantly higher IVF rates than those observed in control oocytes. However, ovulated GV oocytes matured in vivo had significantly lower IVF rates than those noted in control oocytes. It is concluded that CLZ is able to synchronize oocyte maturation and improve IVF rates in superovulated mice. CLZ may be capable of showing similar effects in humans, especially since temporal arrest of human oocyte maturation with other PDE3A inhibitors in vitro was found to improve oocyte competence level. The capability of a clinically approved PDE3A inhibitor to improve oocyte fertilization rates in mice at doses extrapolated from human therapeutic doses suggests the potential scenario of the inclusion of CLZ in superovulation programs. This may improve IVF outcomes in infertile patients.  相似文献   
94.
95.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号