首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3620篇
  免费   317篇
  国内免费   473篇
  4410篇
  2024年   20篇
  2023年   61篇
  2022年   161篇
  2021年   234篇
  2020年   168篇
  2019年   203篇
  2018年   177篇
  2017年   159篇
  2016年   181篇
  2015年   245篇
  2014年   275篇
  2013年   327篇
  2012年   342篇
  2011年   292篇
  2010年   186篇
  2009年   194篇
  2008年   187篇
  2007年   148篇
  2006年   150篇
  2005年   113篇
  2004年   74篇
  2003年   70篇
  2002年   50篇
  2001年   39篇
  2000年   36篇
  1999年   50篇
  1998年   26篇
  1997年   26篇
  1996年   23篇
  1995年   34篇
  1994年   25篇
  1993年   23篇
  1992年   21篇
  1991年   11篇
  1990年   8篇
  1989年   8篇
  1988年   11篇
  1987年   10篇
  1986年   6篇
  1985年   14篇
  1984年   5篇
  1983年   5篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有4410条查询结果,搜索用时 31 毫秒
21.
22.

Background

We previously cloned the Ssp411 gene. We found that the Ssp411 protein is predominantly expressed in elongated spermatids in the rat testis in a stage-dependent manner. Although our findings strongly suggested that Ssp411 might play an important role in mammalian spermatogenesis, this hypothesis has not been studied.

Methods

We first used real-time PCR, Western blotting and immunohistochemistry to confirm that the expression pattern of Ssp411 in several murine tissues is similar to its expression pattern in corresponding rat tissues. To better understand the roles of Ssp411 in male reproduction in vivo, we identified and characterized an Ssp411 expression-disrupted murine strain (Ssp411PB/PB) that was generated by piggyBac (PB) transposon insertion. We studied Ssp411-interacting proteins using proteome microarray, co-IP and GST pull-down assay.

Results

Both Ssp411 mRNA and protein were detected exclusively in spermatids after step 9 during spermiogenesis in testis. Phenotypic analysis suggested that only Ssp411PB/PB males are sterile. These males have smaller testes, reduced sperm counts, decreased sperm motility and deformed spermatozoa. Microscopy analysis indicated that the manchette, a structurally reshaped sperm head, is aberrant in Ssp411PB/PB spermatids. The results of proteome microarray analysis and GST pull-down assays suggested that Ssp411 participates the ubiquitin-proteasome system by interacting with PSMC3. This has been reported to be manchette-associated and important for the head shaping of spermatids.

Conclusions

Our study suggested that Ssp411 is required for spermiogenesis. It seems to play a role in sperm head shaping. The lack of Ssp411 causes sperm deformation and results in male infertility.

General significance

Ssp411PB/PB mouse strain is an animal model of idiopathic oligoasthenoteratozoospermia (iOAT), and the gene may represent a therapeutic target for iOAT patients.  相似文献   
23.
大球盖菇硒多糖体内抗氧化能力检测   总被引:2,自引:0,他引:2  
采用液体发酵的方法对大球盖菇菌丝进行富硒培养,提取硒多糖进行抗氧化能力测定.结果表明,大球盖菇硒多糖能明显提高小鼠血中SOD、GSH-Px的含量,能在一定程度上显著降低血中MDA的含量,具有显著的抗氧化功能.  相似文献   
24.
A two-stage culture strategy was studied for continuous high-level production of a foreign protein in the chemically inducible T7 expression system. The first stage is dedicated to the maintenance of plasmid-bearing cells and the second stage to the target protein synthesis by induction of cells coming from the first stage. On entering the second stage, recombinant cells undergo a gradual induction of the target gene expression. These plasmid-bearing cells experience dynamic changes in intracellular compositions and specific growth rates with their individual residence times. Therefore, the overall cultural characteristics in the production stage are really averages of the contributions from the various cells with different residence times. The behavior of the two-stage culture is described by a model, which accounts for dynamic variations of cell growth and protein synthesis rates with cell residence times. Model simulations were compared with experimental results at a variety of operating conditions such as inducer concentration and dilution rate. This model is useful for understanding the behavior of two-stage continuous cultures. (c) 1993 John Wiley & Sons, Inc.  相似文献   
25.
Effects of caffeine on in vivo and in vitro oocyte maturation in mice   总被引:2,自引:0,他引:2  
The objective was to investigate, using a mouse model, the effects of caffeine on the number of ovulated oocytes, the rate of oocyte maturation, the susceptibility of oocytes to activating stimuli, spindle morphology, and distribution of cortical granules (CGs). Mice were given caffeine (150 mg/kg body weight ip) at various times relative to hCG (-2, 0, and +2h); in an in vitro study, 1, 5 or 10 mM caffeine was added to the maturation culture. Caffeine had no effect on the quality of oocytes in vivo maturation, but caffeine was detrimental to the quality of oocytes matured in vitro. Further studies are needed to determine caffeine concentration in follicles relative to that in culture medium.  相似文献   
26.
In this study, we aimed to study the role of growth factor receptor-bound protein 2 (Grb2) in palmitic acid-induced steatosis and other “fatty liver” symptoms in vitro. HepG2 cells, with or without stably suppressed Grb2 expression, were incubated with palmitic acid for 24 h to induce typical clinical “fatty liver” features, including steatosis, impaired glucose metabolism, oxidative stress, and apoptosis. MTT and Oil Red O assays were applied to test cell viability and fat deposition, respectively. Glucose uptake assay was used to evaluate the glucose utilization of cells. Quantitative polymerase chain reaction and Western blot were used to measure expressional changes of key markers of insulin signaling, lipid/glucose metabolism, oxidative stress, and apoptosis. After 24-h palmitic acid induction, increased fat accumulation, reduced glucose uptake, impaired insulin signaling, enhanced oxidative stress, and increased apoptosis were observed in HepG2 cells. Suppression of Grb2 in HepG2 significantly reduced fat accumulation, improved glucose metabolism, ameliorated oxidative stress, and restored the activity of insulin receptor substrate-1/Akt and MEK/ERK pathways. In addition, Grb2 deficiency attenuated hepatic apoptosis shown by reduced activation of caspase-3 and fluorescent staining. Modulation of Bcl-2 and Bak1 also contributed to reduced apoptosis. In conclusion, suppression of Grb2 expression in HepG2 cells improved hepatic steatosis, glucose metabolism, oxidative stress, and apoptosis induced by palmitic acid incubation partly though modulating the insulin signaling pathway.  相似文献   
27.
28.
Recent studies have demonstrated the possible function of miR-139-5p in tumorigenesis. However, the exact mechanism of miR-139-5p in cancer remains unclear. In this study, the association of miR-139-5p expression with esophageal squamous cell carcinoma (ESCC) was evaluated in 106 pairs of esophageal cancer and adjacent non-cancerous tissue from ESCC patients. The tumor suppressive features of miR-139-5p were measured by evaluating cell proliferation and cell cycle state, migratory activity and invasion capability, as well as apoptosis. Luciferase reporter assay and Western blot analysis were performed to determine the target gene regulated by miR-139-5p. The mRNA level of NR5A2, the target gene of miR-139-5p, was determined in ESCC patients. Results showed that reduced miR-139-5p level was associated with lymph node metastases of ESCC. MiR-139-5p was investigated to induce cell cycle arrest in the G0/G1 phase and to suppress the invasive capability of esophageal carcinoma cells by targeting the 3′UTR of oncogenic NR5A2. Cyclin E1 and MMP9 were confirmed to participate in cell cycle arrest and invasive suppression induced by NR5A2, respectively. Pearson correlation analysis further confirmed the significantly negative correlation between miR-139-5p and NR5A2 expression. The results suggest that miR-139-5p exerts a growth- and invasiveness-suppressing function in human ESCCs, which demonstrates that miR-139-5p is a potential biomarker for early diagnosis and prognosis and is a therapeutic target for ESCC.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号