首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1616篇
  免费   69篇
  国内免费   113篇
  2024年   1篇
  2023年   24篇
  2022年   44篇
  2021年   82篇
  2020年   54篇
  2019年   66篇
  2018年   53篇
  2017年   35篇
  2016年   58篇
  2015年   92篇
  2014年   100篇
  2013年   103篇
  2012年   161篇
  2011年   133篇
  2010年   75篇
  2009年   71篇
  2008年   96篇
  2007年   75篇
  2006年   73篇
  2005年   54篇
  2004年   56篇
  2003年   39篇
  2002年   21篇
  2001年   39篇
  2000年   21篇
  1999年   20篇
  1998年   15篇
  1997年   17篇
  1996年   13篇
  1995年   10篇
  1994年   11篇
  1993年   12篇
  1992年   18篇
  1991年   12篇
  1990年   10篇
  1989年   6篇
  1988年   7篇
  1987年   5篇
  1986年   6篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1981年   1篇
  1980年   1篇
排序方式: 共有1798条查询结果,搜索用时 15 毫秒
941.
942.
PURPOSE OF REVIEW: The aim of this review is to assess the role of adipose tissue-derived hormones and inflammatory cytokines in the pathogenesis of obesity-linked type II diabetes, with a special focus on articles published between December 2002 and December 2003. RECENT FINDINGS: Insulin resistance is widely recognized as a fundamental defect seen in obesity and type II diabetes. Although the molecular mechanisms triggering the development of insulin resistance remain elusive, recent studies have suggested that adipose tissue and adipose tissue-derived hormones and inflammatory cytokines play essential roles in the overall insulin sensitivity in vivo. Dysfunctions of adipose tissue can lead to systemic insulin resistance. SUMMARY: Understanding the regulation of the metabolic and secretory functions of adipose tissue, as well as its subsequent impact on overall insulin sensitivity, is becoming increasingly important given the therapeutic potential of targeting the root causes of insulin resistance in the treatment of type 2 diabetes and its associated complications, such as cardiovascular and cerebrovascular diseases.  相似文献   
943.
The importance of analogues of lactosyl ceramides as basic structures of many natural glycosphingolipids provided a rationale for developing an efficient synthetic route to these compounds. We report herein a novel approach to synthesize several members of this family. Glycosylation of N-diphenylmethylene-spingosine, which exists in an imine–oxazolidine tautomeric mixture, with acetobromolactose under a modified Koenigs-Knorr condition yielded lactosyl -(1 1) sphingosine, lactosyl -(1 3) sphingosine and dilactosyl sphingosine in good yields. A similar glycosylation could be applicable to the synthesis of other glycosphingolipids.  相似文献   
944.
Hematopoietic cytokine receptors, such as the erythropoietin receptor (EpoR), are single membrane-spanning proteins. Signal transduction through EpoR is crucial for the formation of mature erythrocytes. Structural evidence shows that in the unliganded form EpoR exists as a preformed homodimer in an open scissor-like conformation precluding the activation of signaling. In contrast to the extracellular domain of the growth hormone receptor (GHR), the structure of the agonist-bound EpoR extracellular region shows only minimal contacts between the membrane-proximal regions. This evidence suggests that the domains facilitating receptor dimerization may differ between cytokine receptors. We show that the EpoR transmembrane domain (TM) has a strong potential to self interact in a bacterial reporter system. Abolishing self assembly of the EpoR TM by a double point mutation (Leu 240-Leu 241 mutated to Gly-Pro) impairs signal transduction by EpoR in hematopoietic cells and the formation of erythroid colonies upon reconstitution in erythroid progenitor cells from EpoR(-/-) mice. Interestingly, inhibiting TM self assembly in the constitutively active mutant EpoR R129C abrogates formation of disulfide-linked receptor homodimers and consequently results in the loss of ligand-independent signal transduction. Thus, efficient signal transduction through EpoR and possibly other preformed receptor oligomers may be determined by the dynamics of TM self assembly.  相似文献   
945.
Although activation of protein kinase C (PKC) is known to promote cell survival and protect against cell death, the PKC targets and pathways that serve this function have remained elusive. Here we demonstrate that two potent activators of PKC, 12-O-tetradecanoylphorbol-13-acetate and bryostatin, both stimulate phosphorylation of Bad at Ser(112), a site known to regulate apoptotic cell death by interleukin-3. PKC inhibitors but not PI 3-kinase/Akt inhibitors block 12-O-tetradecanoylphorbol-13-acetate-stimulated Bad phosphorylation. PKC isoforms tested in vitro were unable to phosphorylate Bad at Ser(112), suggesting that PKC acts indirectly to activate a downstream Bad kinase. p90(RSK) and family members RSK-2 and RSK-3 are activated by phorbol ester and phosphorylate Bad at Ser(112) both in vitro and in vivo. p90(RSK) stimulates binding of Bad to 14-3-3 and blocks Bad-mediated cell death in a Ser(112)-dependent manner. These findings suggest that p90(RSK) can function in a PKC-dependent pathway to promote cell survival via phosphorylation and inactivation of Bad-mediated cell death.  相似文献   
946.
Cotton is the most important textile crop as a result of its long cellulose-enriched mature fibers. These single-celled hairs initiate at anthesis from the ovule epidermis. To date, genes proven to be critical for fiber development have not been identified. Here, we examined the role of the sucrose synthase gene (Sus) in cotton fiber and seed by transforming cotton with Sus suppression constructs. We focused our analysis on 0 to 3 days after anthesis (DAA) for early fiber development and 25 DAA, when the fiber and seed are maximal in size. Suppression of Sus activity by 70% or more in the ovule epidermis led to a fiberless phenotype. The fiber initials in those ovules were fewer and shrunken or collapsed. The level of Sus suppression correlated strongly with the degree of inhibition of fiber initiation and elongation, probably as a result of the reduction of hexoses. By 25 DAA, a portion of the seeds in the fruit showed Sus suppression only in the seed coat fibers and transfer cells but not in the endosperm and embryo. These transgenic seeds were identical to wild-type seeds except for much reduced fiber growth. However, the remaining seeds in the fruit showed Sus suppression both in the seed coat and in the endosperm and embryo. These seeds were shrunken with loss of the transfer cells and were <5% of wild-type seed weight. These results demonstrate that Sus plays a rate-limiting role in the initiation and elongation of the single-celled fibers. These analyses also show that suppression of Sus only in the maternal seed tissue represses fiber development without affecting embryo development and seed size. Additional suppression in the endosperm and embryo inhibits their own development, which blocks the formation of adjacent seed coat transfer cells and arrests seed development entirely.  相似文献   
947.
Modulation of the voltage-dependent transient outward potassium current (IA) by Pb2+ was studied in acutely dissociated rat hippocampal pyramidal cells from the CA1 region at postnatal ages 7-14 days using the conventional whole-cell patch-clamp technique. In the presence of different concentrations of external Pb2+, the initial delay and activation time of IA were concentration-dependently lengthened. In particular, the initial delay was even longer in 1 mM Pb2+, showing no signs of saturation. Pb2+ also slowed the inactivation of IA, for decay time constants in the presence of Pb2+ were increased under the same experimental protocols. The activation curves, which were reasonably fitted by a single Boltzmann function, illustrated that Pb2+ increased the voltage threshold of IA and shifted the normalized activation current-voltage curves to more depolarizing voltage commands. Moreover, Pb2+ significantly affected the steady-state inactivation of IA. The application of Pb 2+ made the curves of the steady-state inactivation of IA shift to more depolarizing voltages with little change in the slopes factors. In brief, the results demonstrated that Pb2+ is a dose- and voltage-dependent, reversible blocker of IA currents of hippocampal CA1 neurons. The observations were fitted by the revised "Kuo and Chen type model", which postulates a Pb2+-selective site near the pore of the IA channel and that modulation of the IA channel by Pb2+ is the result of the competitive influences of Pb2+ on opening and inactivating different pathways.  相似文献   
948.
949.
Ruan B  Lai PS  Yeh CW  Wilson WK  Pang J  Xu R  Matsuda SP  Schroepfer GJ 《Steroids》2002,67(13-14):1109-1119
Yeast produce traces of aberrant sterols by minor alternative pathways, which can become significant when normal metabolism is blocked by inhibitors or mutations. We studied sterols generated in the absence of the delta(8)-delta(7) isomerase (Erg2p) or delta(5) desaturase (Erg3p) by incubating three mutant strains of Saccharomyces cerevisiae with 5 alpha-cholest-8-en-3beta-ol, 8-dehydrocholesterol (delta(5,8) sterol), or isodehydrocholesterol (delta(6,8) sterol), together with the corresponding 3 alpha-3H isotopomer. Nine different incubations gave altogether 16 sterol metabolites, including seven delta(22E) sterols formed by action of the yeast C-22 desaturase (Erg5p). These products were separated by silver-ion high performance liquid chromatography (Ag(+)-HPLC) and identified by gas chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy, and radio-Ag(+)-HPLC. When delta(8)-delta(7) isomerization was blocked, exogenous delta(8) sterol underwent desaturation to delta(5,8), delta(6,8), and delta(8,14) sterols. Formation of delta(5,8) sterol was strongly favored over delta(6,8) sterol, but both pathways are essentially dormant under normal conditions of sterol synthesis. The delta(5,8) sterol was metabolically almost inert except for delta(22) desaturation, whereas the delta(6,8) sterol was readily converted to delta(5,7), delta(5,7,9(11)), and delta(7,9(11)) sterols. The combined results indicate aberrant metabolic pathways similar to those in mammalian systems. However, delta(5,7) sterol undergoes only slight isomerization or desaturation in yeast, an observation that accounts for the lower levels of delta(5,8) and delta(5,7,9(11)) sterols in wild-type yeast compared to Smith-Lemli-Opitz individuals.  相似文献   
950.
Liu J  Wu S  Wei H  Zhou K  Ruan Y  Lai W 《Hormone research》2002,58(1):16-20
OBJECTIVE: To investigate the adjustment of estrogen, progesterone and testosterone on the proliferation of female and male rat vascular endothelial cells (VECs) separately. METHODS: Rat lung VECs were cultured according to the block explanting method. MTT assay was used to measure the proliferation of VECs. RESULTS: 17beta-Estradiol (E(2)) at 3 x 10(-8) and 3 x 10(-7) M accelerated the proliferation of female rat VECs (p < 0.01). E(2) at 3 x 10(-9), 3 x 10(-8) and 3 x 10(-7) M accelerated the proliferation of male rat VECs (p < 0.05). Tamoxifen, the estrogen receptor antagonist, could block the effect of estrogen on the proliferation of VECs. Testosterone at 3 x 10(-8) and 3 x 10(-7) M significantly increased the proliferation of male rat VECs (p < 0.05), but had no effect on female rat VECs. Progesterone at 10(-9) and 10(-8) M had no effect on female rat VECs alone. When the ratio of E(2) to progesterone was 3/10, the proliferation of female rat VECs was accelerated (p < 0.05). When the ratio of E(2) to testosterone was 1/1, the proliferation of female rat VECs was also hastened (p < 0.05). However, when the ratio was reduced to 1/100, the hastening effect disappeared. CONCLUSION: Estrogen can speed up the proliferation of female and male rat VECs, while progesterone has no effect on female rat VECs alone. The balance of the ratio of E(2) to testosterone, E(2) to progesterone may play an important role in the proliferation of female rat VECs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号