首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   110561篇
  免费   8441篇
  国内免费   6972篇
  125974篇
  2024年   215篇
  2023年   1451篇
  2022年   3239篇
  2021年   5476篇
  2020年   3578篇
  2019年   4374篇
  2018年   4353篇
  2017年   3229篇
  2016年   4600篇
  2015年   6678篇
  2014年   7863篇
  2013年   8315篇
  2012年   9963篇
  2011年   8870篇
  2010年   5446篇
  2009年   4749篇
  2008年   5588篇
  2007年   4923篇
  2006年   4373篇
  2005年   3332篇
  2004年   2935篇
  2003年   2531篇
  2002年   2206篇
  2001年   2002篇
  2000年   1861篇
  1999年   1841篇
  1998年   1014篇
  1997年   1137篇
  1996年   1017篇
  1995年   919篇
  1994年   942篇
  1993年   666篇
  1992年   993篇
  1991年   838篇
  1990年   613篇
  1989年   559篇
  1988年   485篇
  1987年   411篇
  1986年   388篇
  1985年   390篇
  1984年   211篇
  1983年   197篇
  1982年   137篇
  1981年   114篇
  1980年   107篇
  1979年   115篇
  1978年   78篇
  1977年   60篇
  1974年   74篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
952.
953.
954.
Joint capsule fibrosis caused by excessive inflammation results in post-traumatic joint contracture (PTJC). Transforming growth factor (TGF)-β1 plays a key role in PTJC by regulating fibroblast functions, however, cytokine-induced TGF-β1 expression in specific cell types remains poorly characterized. Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine involved in inflammation- and fibrosis-associated pathophysiology. In this study, we investigated whether MIF can facilitate TGF-β1 production from fibroblasts and regulate joint capsule fibrosis following PTJC. Our data demonstrated that MIF and TGF-β1 significantly increased in fibroblasts of injured rat posterior joint capsules. Treatment the lesion sites with MIF inhibitor 4-Iodo-6-phenylpyrimidine (4-IPP) reduced TGF-β1 production and relieved joint capsule inflammation and fibrosis. In vitro, MIF facilitated TGF-β1 expression in primary joint capsule fibroblasts by activating mitogen-activated protein kinase (MAPK) (P38, ERK) signaling through coupling with membrane surface receptor CD74, which in turn affected fibroblast functions and promoted MIF production. Our results reveal a novel function of trauma-induced MIF in the occurrence and development of joint capsule fibrosis. Further investigation of the underlying mechanism may provide potential therapeutic targets for PTJC.  相似文献   
955.
956.
Ethnopharmacological relevance: Gualou Xiebai Banxia (GLXBBX) decoction is a well-known traditional Chinese herbal formula that was first discussed in the Synopsis of the Golden Chamber by Zhang Zhongjing in the Eastern Han Dynasty. In traditional Chinese medicine, GLXBBX is commonly prescribed to treat cardiovascular diseases, such as coronary heart disease and atherosclerosis.Objective: The present study aimed to examine GLXBBX’s preventative capacity and elucidate the potential molecular mechanism of Poloxamer 407 (P407)-induced hyperlipidemia in rats.Materials and methods: Both the control and model groups received pure water, and the test group also received a GLXBBX decoction. For each administration, 3 ml of the solution was administered orally. To establish hyperlipidemia, a solution mixed with 0.25 g/kg P407 dissolved in 0.9% normal saline was injected slowly into the abdominal cavity. At the end of the study, the rats’ plasma lipid levels were calculated using an automatic biochemical analyzer to evaluate the preventative capability of the GLXBBX decoction, and the serum and liver of the rats were collected.Results: The GLXBBX decoction significantly improved P407-induced hyperlipidemia, including increased plasma triglycerides (TGs), aspartate aminotransferase (AST) elevation, and lipid accumulation. Moreover, GLXBBX decoction treatment increased lipoprotein lipase (LPL) activity and mRNA expression of LPL. Furthermore, GLXBBX significantly suppressed the mRNA expression of stearoyl-CoA desaturase (SCD1).Conclusion: GLXBBX significantly improved P407-induced hyperlipidemia, which may have been related to enhanced LPL activity, increased LPL mRNA expression, and decreased mRNA expression of SCD1.  相似文献   
957.
The persistence of leukemia stem cells (LSCs) is one of the leading causes of chemoresistance in acute myeloid leukemia (AML). To explore the factors important in LSC-mediated resistance, we use mass spectrometry to screen the factors related to LSC chemoresistance and defined IFN-γ-inducible lysosomal thiol reductase (GILT) as a candidate. We found that the GILT expression was upregulated in chemoresistant CD34+ AML cells. Loss of function studies demonstrated that silencing of GILT in AML cells sensitized them to Ara-C treatment both in vitro and in vivo. Further mechanistic findings revealed that the ROS-mediated mitochondrial damage plays a pivotal role in inducing apoptosis of GILT-inhibited AML cells after Ara-C treatment. The inactivation of PI3K/Akt/ nuclear factor erythroid 2-related factor 2 (NRF2) pathway, causing reduced generation of antioxidants such as SOD2 and leading to a shifted ratio of GSH/GSSG to the oxidized form, contributed to the over-physiological oxidative status in the absence of GILT. The prognostic value of GILT was also validated in AML patients. Taken together, our work demonstrated that the inhibition of GILT increases AML chemo-sensitivity through elevating ROS level and induce oxidative mitochondrial damage-mediated apoptosis, and inhibition of the PI3K/Akt/NRF2 pathway enhances the intracellular oxidative state by disrupting redox homeostasis, providing a potentially effective way to overcome chemoresistance of AML.  相似文献   
958.
Understanding the effects of changing climate and long-term human activities on soil organic carbon (SOC) and the mediating roles of microorganisms is critical to maintain soil C stability in agricultural ecosystem. Here, we took samples from a long-term soil transplantation experiment, in which large transects of Mollisol soil in a cold temperate region were translocated to warm temperate and mid-subtropical regions to simulate different climate conditions, with a fertilization treatment on top. This study aimed to understand fertilization effect on SOC and the role of soil microorganisms featured after long-term community incubation in warm climates. After 12 years of soil transplantation, fertilization led to less reduction of SOC, in which aromatic C increased and the consumption of O-alkyl C and carbonyl C decreased. Soil live microbes were analyzed using propidium monoazide to remove DNAs from dead cells, and their network modulization explained 60.4% of variations in soil labile C. Single-cell Raman spectroscopy combined with D2O isotope labeling indicated a higher metabolic activity of live microbes to use easily degradable C after soil transplantation. Compared with non-fertilization, there was a significant decrease in soil α- and β-glucosidase and delay on microbial growth with fertilization in warmer climate. Moreover, fertilization significantly increased microbial necromass as indicated by amino sugar content, and its contribution to soil resistant C reached 22.3%. This study evidentially highlights the substantial contribution of soil microbial metabolism and necromass to refractory C of SOC with addition of nutrients in the long-term.Subject terms: Microbial ecology, Biodiversity  相似文献   
959.
N 6‐methyladenosine (m6A) is a chemical modification present in multiple RNA species and is most abundant in mRNAs. Studies on m6A reveal its comprehensive roles in almost every aspect of mRNA metabolism, as well as in a variety of physiological processes. Although some recent discoveries indicate that m6A can affect the life cycles of numerous viruses as well as the cellular antiviral immune response, the roles of m6A modification in type I interferon (IFN‐I) signaling are still largely unknown. Here, we reveal that WT1‐associated protein (WTAP), one of the m6A “writers”, is degraded via the ubiquitination‐proteasome pathway upon activation of IFN‐I signaling. With the degradation of WTAP, the m6A levels of IFN‐regulatory factor 3 (IRF3) and interferon alpha/beta receptor subunit 1 (IFNAR1) mRNAs are reduced, leading to translational suppression of IRF3 and instability of IFNAR1 mRNA. Thus, the WTAP‐IRF3/IFNAR1 axis may serve as negative feedback pathway to fine‐tune the activation of IFN‐I signaling, which highlights the roles of m6A in the antiviral response by dictating the fate of mRNAs associated with IFN‐I signaling.  相似文献   
960.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号