首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   202039篇
  免费   9321篇
  国内免费   10509篇
  2024年   261篇
  2023年   1496篇
  2022年   3426篇
  2021年   5738篇
  2020年   3988篇
  2019年   4931篇
  2018年   15269篇
  2017年   13121篇
  2016年   11620篇
  2015年   7587篇
  2014年   8553篇
  2013年   9018篇
  2012年   14442篇
  2011年   21507篇
  2010年   17196篇
  2009年   13112篇
  2008年   15472篇
  2007年   16397篇
  2006年   5055篇
  2005年   4331篇
  2004年   4181篇
  2003年   3974篇
  2002年   3284篇
  2001年   2269篇
  2000年   2000篇
  1999年   1798篇
  1998年   1134篇
  1997年   1083篇
  1996年   1016篇
  1995年   893篇
  1994年   851篇
  1993年   692篇
  1992年   895篇
  1991年   699篇
  1990年   520篇
  1989年   491篇
  1988年   417篇
  1987年   395篇
  1986年   295篇
  1985年   322篇
  1984年   194篇
  1983年   203篇
  1982年   126篇
  1981年   103篇
  1980年   75篇
  1979年   95篇
  1977年   75篇
  1975年   69篇
  1972年   311篇
  1971年   308篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
91.
Climate-driven increases in wildfires, drought conditions, and insect outbreaks are critical threats to forest carbon stores. In particular, bark beetles are important disturbance agents although their long-term interactions with future climate change are poorly understood. Droughts and the associated moisture deficit contribute to the onset of bark beetle outbreaks although outbreak extent and severity is dependent upon the density of host trees, wildfire, and forest management. Our objective was to estimate the effects of climate change and bark beetle outbreaks on ecosystem carbon dynamics over the next century in a western US forest. Specifically, we hypothesized that (a) bark beetle outbreaks under climate change would reduce net ecosystem carbon balance (NECB) and increase uncertainty and (b) these effects could be ameliorated by fuels management. We also examined the specific tree species dynamics—competition and release—that determined NECB response to bark beetle outbreaks. Our study area was the Lake Tahoe Basin (LTB), CA and NV, USA, an area of diverse forest types encompassing steep elevation and climatic gradients and representative of mixed-conifer forests throughout the western United States. We simulated climate change, bark beetles, wildfire, and fuels management using a landscape-scale stochastic model of disturbance and succession. We simulated the period 2010–2100 using downscaled climate projections. Recurring droughts generated conditions conducive to large-scale outbreaks; the resulting large and sustained outbreaks significantly increased the probability of LTB forests becoming C sources over decadal time scales, with slower-than-anticipated landscape-scale recovery. Tree species composition was substantially altered with a reduction in functional redundancy and productivity. Results indicate heightened uncertainty due to the synergistic influences of climate change and interacting disturbances. Our results further indicate that current fuel management practices will not be effective at reducing landscape-scale outbreak mortality. Our results provide critical insights into the interaction of drivers (bark beetles, wildfire, fuel management) that increase the risk of C loss and shifting community composition if bark beetle outbreaks become more frequent.  相似文献   
92.
93.
Compelling evidence suggests the limitation and shortcomings of the current and well established cell culture method using multi-well plates, flasks and Petri dishes. These are particularly important when cell functions are sensitive to the local microenvironment, cell–cell and cell–extracellular matrix interactions. There is a clear need for advanced cell culture systems which mimic in vivo and more physiological conditions. This review summarises and analyses recent progress in three dimensional (3D) cell culture with perfusion as the next generation cell culture tools, while excluding engineered tissue culture where three dimensional scaffold has to be used for structural support and perfusion for overcoming mass transfer control. Apart from research activities in academic community, product development in industry is also included in this review.  相似文献   
94.
95.
Hafnia alvei, a Gram negative bacillus related to the Enterobacteriaceae family, is considered an opportunistic pathogen of several animal species and humans. In this communication, we describe fimbrial-like structures from different strains of H. alvei that cannot be easily ascribed to any of the previously reported fimbrial types in this species (type I or type III). Polymerase chain reaction (PCR) and immunofluorescence assays were carried out to study fimbriae and flagella in H. alvei strains isolated from different sources. No correlation between the results obtained by PCR and those obtained by phenotypic methods were found, and the antibodies used gave cross or different recognition patterns of the surface structures present in these strains. We report as well that strain and growth temperature influence fimbriation and expression of flagella in human and animal isolates of H. alvei. This study also indicates that the absence of fimbriae have a significant positive influence on the initial adhesion of H. alvei to human epithelial cells.  相似文献   
96.
97.
The objective of this study is to compare the thermal stress changes in the tooth microstructures and the hydrodynamic changes of the dental fluid under hot and cold stimuli. The dimension of the microstructures of eleven cats’ teeth was measured by scanning electron microscopy, and the changes in thermal stress during cold and hot stimulation were calculated by 3D fluid–structure interaction modeling. Evaluation of results, following data validation, indicated that the maximum velocities in cold and hot stimuli were ??410.2?±?17.6 and +?205.1?±?8.7 µm/s, respectively. The corresponding data for maximum thermal stress were ??20.27?±?0.79 and +?10.13?±?0.24 cmHg, respectively. The thermal stress caused by cold stimulus could influence almost 2.9 times faster than that caused by hot stimulus, and the durability of the thermal stress caused by hot stimulus was 71% greater than that by cold stimulus under similar conditions. The maximum stress was on the tip of the odontoblast, while the stress in lateral walls of the odontoblast and terminal fibril was very weak. There is hence a higher possibility of pain transmission with activation of stress-sensitive ion channels at the tip of the odontoblast. The maximum thermal stress resulted from the cold stimulus is double that produced by the hot stimulus. There is a higher possibility of pain transmission in the lateral walls of the odontoblast and terminal fibril by releasing mediators during the cold stimulation than the hot stimulation. These two reasons can be associated with a greater pain sensation due to intake of cold liquids.  相似文献   
98.
In order to discriminate between the ionic and osmotic components of salt stress, sugarcane (Saccharum officinarum L. cv. Co 86032) calli were cultured on media containing NaCl or polyethylene glycol (PEG) 8000 that exerted the same osmotic pressure (−0.7 MPa). PEG stress exposure for 15 days led to significant growth reduction and loss in water content than salt stressed and control tissues. Osmotic adjustment (OA) was observed in callus tissues grown on salt, but was not evident in callus grown on PEG. Oxidative damage to membranes, estimated in terms of accumulation of thiobarbituric acid reactive substances-TBARS and electrolytic leakage was significantly higher in both the stressed calli than the control however, the extent of damage was more in the PEG stressed calli. The stressed callus tissues showed inhibition of ascorbate peroxidase activity, while catalase activity was increased. These results indicate sensitivity of cells to PEG-mediated stress than salt stress and differences in their OA to these two stress conditions. The sensitivity to the osmotic stress indicate that expression of the stress tolerance response requires the coordinated action of different tissues in a plant and hence was not expressed at the cellular level.  相似文献   
99.
100.
Drip loss, one of the most important meat quality traits, is characterized by low heritability. To date, the genetic factors affecting the drip loss trait have not been clearly elucidated. The objective of this study was to identify critical candidate genes affecting drip loss. First, we generated a Pietrain × Duroc × Landrace × Yorkshire commercial pig population and obtained phenotypic values for the drip loss trait. Furthermore, we constructed two RNA libraries from pooled samples of longissimus dorsi muscles with the highest (H group) and lowest (L group) drip loss and identified the differentially expressed genes (DEGs) between these extreme phenotypes using RNA‐seq technology. In total, 25 883 genes were detected in the H and L group libraries, and none was specifically expressed in only one library. Comparative analysis of gene expression levels found that 150 genes were differentially expressed, of which 127 were upregulated and 23 were downregulated in the H group relative to the L group. In addition, 68 drip loss quantitative trait loci (QTL) overlapping with 63 DEGs were identified, and these QTL were distributed mainly on chromosomes 1, 2, 5 and 6. Interestingly, the triadin (TRDN) gene, which is involved in muscle contraction and fat deposition, and the myostatin (MSTN) gene, which has a role in muscle growth, were localized to more than two drip loss QTL, suggesting that both are critical candidate genes responsible for drip loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号