全文获取类型
收费全文 | 581篇 |
免费 | 59篇 |
专业分类
640篇 |
出版年
2023年 | 6篇 |
2022年 | 8篇 |
2021年 | 13篇 |
2020年 | 4篇 |
2019年 | 21篇 |
2018年 | 16篇 |
2017年 | 14篇 |
2016年 | 15篇 |
2015年 | 39篇 |
2014年 | 32篇 |
2013年 | 36篇 |
2012年 | 48篇 |
2011年 | 30篇 |
2010年 | 33篇 |
2009年 | 20篇 |
2008年 | 27篇 |
2007年 | 36篇 |
2006年 | 24篇 |
2005年 | 24篇 |
2004年 | 30篇 |
2003年 | 31篇 |
2002年 | 22篇 |
2001年 | 12篇 |
2000年 | 5篇 |
1999年 | 14篇 |
1998年 | 5篇 |
1997年 | 3篇 |
1996年 | 5篇 |
1995年 | 5篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1992年 | 9篇 |
1991年 | 13篇 |
1990年 | 6篇 |
1989年 | 4篇 |
1988年 | 4篇 |
1987年 | 2篇 |
1986年 | 5篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1982年 | 1篇 |
1978年 | 2篇 |
1972年 | 2篇 |
1971年 | 2篇 |
1968年 | 1篇 |
1955年 | 1篇 |
1943年 | 1篇 |
1942年 | 1篇 |
排序方式: 共有640条查询结果,搜索用时 15 毫秒
81.
Alexandre Terrier Marjan Sedighi-Gilani Alireza Roshan Ghias Line Aschwanden Dominique P. Pioletti 《Computer methods in biomechanics and biomedical engineering》2013,16(3):333-339
Tibial bone defect is a critical problem for revision knee arthroplasty. Instead of using metallic spacer or cement, biodegradable scaffolds could be an alternative solution. A numerical model of a revision knee arthroplasty was thus developed to estimate the mechanical resistance of the scaffold in this demanding situation. The tibia, scaffold, and prosthesis were represented by simplified parameterised geometries. The maximal gait cycle force was applied asymmetrically to simulate a critical loading. Several parameters were analysed: 1) inter-individual variability, 2) cortical bone stiffness, 3) cortical bone thickness, 4) prosthesis fixation quality, and 5) scaffold thickness. The calculated scaffold strain was compared to its experimental ultimate strain. Among the tested parameters, failure was only predicted with scaffold thickness below 5 mm. This study suggests that biodegradable bone scaffolds could be used to fill bone defects in revision knee arthroplasty, but scaffold size seems to be the limiting factor. 相似文献
82.
83.
84.
Maj Rabjerg Aida Oliván-Viguera Lars Koch Hansen Line Jensen Linda Sevelsted-M?ller Steen Walter Boye L. Jensen Niels Marcussen Ralf K?hler 《PloS one》2015,10(4)
Background
Ca2+-activated K+ channels have been implicated in cancer cell growth, metastasis, and tumor angiogenesis. Here we hypothesized that high mRNA and protein expression of the intermediate-conductance Ca2+-activated K+ channel, KCa3.1, is a molecular marker of clear cell Renal Cell Carcinoma (ccRCC) and metastatic potential and survival.Methodology/Principal Findings
We analyzed channel expression by qRT-PCR, immunohistochemistry, and patch-clamp in ccRCC and benign oncocytoma specimens, in primary ccRCC and oncocytoma cell lines, as well as in two ccRCC cell lines (Caki-1 and Caki-2). CcRCC specimens contained 12-fold higher mRNA levels of KCa3.1 than oncocytoma specimens. The large-conductance channel, KCa1.1, was 3-fold more highly expressed in ccRCC than in oncocytoma. KCa3.1 mRNA expression in ccRCC was 2-fold higher than in the healthy cortex of the same kidney. Disease specific survival trended towards reduction in the subgroup of high-KCa3.1-expressing tumors (p<0.08 vs. low-KCa3.1-expressing tumors). Progression-free survival (time to metastasis/recurrence) was reduced significantly in the subgroup of high-KCa3.1-expressing tumors (p<0.02, vs. low-KCa3.1-expressing tumors). Immunohistochemistry revealed high protein expression of KCa3.1 in tumor vessels of ccRCC and oncocytoma and in a subset of ccRCC cells. Oncocytoma cells were devoid of KCa3.1 protein. In a primary ccRCC cell line and Caki-1/2-ccRCC cells, we found KCa3.1-protein as well as TRAM-34-sensitive KCa3.1-currents in a subset of cells. Furthermore, Caki-1/2-ccRCC cells displayed functional Paxilline-sensitive KCa1.1 currents. Neither KCa3.1 nor KCa1.1 were found in a primary oncocytoma cell line. Yet KCa-blockers, like TRAM-34 (KCa3.1) and Paxilline (KCa1.1), had no appreciable effects on Caki-1 proliferation in-vitro.Conclusions/Significance
Our study demonstrated expression of KCa3.1 in ccRCC but not in benign oncocytoma. Moreover, high KCa3.1-mRNA expression levels were indicative of low disease specific survival of ccRCC patients, short progression-free survival, and a high metastatic potential. Therefore, KCa3.1 is of prognostic value in ccRCC. 相似文献85.
86.
L. Arthur N. Line 《BMJ (Clinical research ed.)》1942,1(4231):193-194
87.
Brule S Charnaux N Sutton A Ledoux D Chaigneau T Saffar L Gattegno L 《Glycobiology》2006,16(6):488-501
We recently demonstrated that stromal cell-derived factor-1(SDF-1/CXCL12) forms complexes with CXCR4, but also with syndecan-4expressed by human primary lymphocytes and macrophages, andHeLa cells. We also suggested that syndecan-4 behaves as a SDF-1-signalingmolecule. Here, we demonstrate that SDF-1 strongly acceleratesthe shedding of syndecan-4 ectodomains and to a lesser extentthat of syndecan-1 from HeLa cells. The fact that this accelerationwas not inhibited by the CXCR4 antagonist AMD3100, anti-CXCR4mAb 12G5, and CXCR4 gene silencing suggests its CXCR4-independence.Pre-treating the cells with heparitinases I, III, or with theprotein kinase C (PKC) inhibitor, bisindolylmaleimide, significantlyinhibited this accelerated shedding, which suggests the involvementof both cell-surface heparan sulfate and PKC transduction pathway.In contrast, Map Kinase or NF-B pathway inhibitors had no effect.Moreover, SDF-1 increases the matrix metalloproteinase-9 (MMP-9)mRNA level as well as MMP-9 activity in HeLa cells, and MMP-9silencing by RNA interference strongly decreases the syndecan-1and -4 ectodomain shedding accelerated by SDF-1. Finally, SDF-1also accelerates in a CXCR4-independent manner, the sheddingof syndecan-1 and -4 from human primary macrophages, which issignificantly inhibited by anti-MMP-9 antibodies. This stronglyindicates the role of MMP-9 in these events occurring in botha tumoral cell line and in human primary macrophages. BecauseMMP-9 plays a crucial role in extracellular matrix degradationduring cancer cell metastasis and invasion, and shed ectodomainsof syndecans may likely be involved in tumor cell proliferation,these data further indicate the multiplicity of the roles playedby SDF-1 on tumor cell biology. 相似文献
88.
Charnaux N Brule S Hamon M Chaigneau T Saffar L Prost C Lievre N Gattegno L 《The FEBS journal》2005,272(8):1937-1951
Stromal cell-derived factor-1 (SDF-1)/CXCL12, the ligand for CXCR4, induces signal transduction. We previously showed that CXCL12 binds to high- and low-affinity sites expressed by primary cells and cell lines, and forms complexes with CXCR4 as expected and also with a proteoglycan, syndecan-4, but does not form complexes with syndecan-1, syndecan-2, CD44 or beta-glycan. We also demonstrated the occurrence of a CXCL12-independent heteromeric complex between CXCR4 and syndecan-4. However, our data ruled out the glycosaminoglycan-dependent binding of CXCL12 to HeLa cells facilitating the binding of this chemokine to CXCR4. Here, we demonstrate that CXCL12 directly binds to syndecan-4 in a glycosaminoglycan-dependent manner. We show that upon stimulation of HeLa cells by CXCL12, CXCR4 becomes tyrosine phosphorylated as expected, while syndecan-4 (but not syndecan-1, syndecan-2 or beta-glycan) also undergoes such tyrosine phosphorylation. Moreover, tyrosine-phosphorylated syndecan-4 from CXCL12-stimulated HeLa cells physically coassociates with tyrosine phosphorylated CXCR4. Pretreatment of the cells with heparitinases I and III prevented the tyrosine phosphorylation of syndecan-4, which suggests that the heparan sulfate-dependent binding of SDF-1 to this proteoglycan is involved. Finally, by reducing syndecan-4 expression using RNA interference or by pretreating the cells with heparitinase I and III mixture, we suggest the involvement of syndecan-4 and heparan sulfate in p44/p42 mitogen-activated protein kinase and Jun N-terminal/stress-activated protein kinase activation by action of CXCL12 on HeLa cells. However, these treatments did not modify the calcium mobilization induced by CXCL12 in these cells. Therefore, syndecan-4 behaves as a CXCL12 receptor, selectively involved in some transduction pathways induced by SDF-1, and heparan sulfate plays a role in these events. 相似文献
89.
Pitx3 is required for motor activity and for survival of a subset of midbrain dopaminergic neurons 总被引:11,自引:0,他引:11
van den Munckhof P Luk KC Ste-Marie L Montgomery J Blanchet PJ Sadikot AF Drouin J 《Development (Cambridge, England)》2003,130(11):2535-2542
Mesencephalic dopaminergic (MesDA) neurons play crucial roles in motor and behavioral processes; their loss in Parkinson's disease (PD) results in striatal dopamine (DA) deficiency and hypokinetic movement disorder. The Pitx3 homeobox gene is expressed in the MesDA system. We now show that only a subset of MesDA neurons express Pitx3 and that in Pitx3-deficient aphakia mice, this subset is progressively lost by apoptosis during fetal (substantia nigra, SN) and postnatal (ventral tegmental area) development, resulting in very low striatal DA and akinesia. Similar to human PD, dorsal SN neurons (which are Pitx3 negative) are spared in mutant mice. Thus, Pitx3 defines a pathway for survival of neurons that are implicated in PD and that are required for spontaneous locomotor activity. 相似文献
90.
Attenuation of cGAS‐STING signaling is mediated by a p62/SQSTM1‐dependent autophagy pathway activated by TBK1 下载免费PDF全文
Thaneas Prabakaran Chiranjeevi Bodda Christian Krapp Bao‐cun Zhang Maria H Christensen Chenglong Sun Line Reinert Yujia Cai Søren B Jensen Morten K Skouboe Jens R Nyengaard Craig B Thompson Robert Jan Lebbink Ganes C Sen Geert van Loo Rikke Nielsen Masaaki Komatsu Lene N Nejsum Martin R Jakobsen Mads Gyrd‐Hansen Søren R Paludan 《The EMBO journal》2018,37(8)
Negative regulation of immune pathways is essential to achieve resolution of immune responses and to avoid excess inflammation. DNA stimulates type I IFN expression through the DNA sensor cGAS, the second messenger cGAMP, and the adaptor molecule STING. Here, we report that STING degradation following activation of the pathway occurs through autophagy and is mediated by p62/SQSTM1, which is phosphorylated by TBK1 to direct ubiquitinated STING to autophagosomes. Degradation of STING was impaired in p62‐deficient cells, which responded with elevated IFN production to foreign DNA and DNA pathogens. In the absence of p62, STING failed to traffic to autophagy‐associated vesicles. Thus, DNA sensing induces the cGAS‐STING pathway to activate TBK1, which phosphorylates IRF3 to induce IFN expression, but also phosphorylates p62 to stimulate STING degradation and attenuation of the response. 相似文献