首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1232篇
  免费   124篇
  2023年   9篇
  2022年   22篇
  2021年   39篇
  2020年   16篇
  2019年   27篇
  2018年   18篇
  2017年   19篇
  2016年   34篇
  2015年   66篇
  2014年   70篇
  2013年   79篇
  2012年   103篇
  2011年   116篇
  2010年   59篇
  2009年   52篇
  2008年   66篇
  2007年   66篇
  2006年   60篇
  2005年   55篇
  2004年   34篇
  2003年   40篇
  2002年   28篇
  2001年   18篇
  2000年   14篇
  1999年   16篇
  1998年   12篇
  1997年   10篇
  1996年   5篇
  1995年   5篇
  1994年   10篇
  1993年   10篇
  1992年   19篇
  1991年   11篇
  1990年   10篇
  1989年   8篇
  1988年   17篇
  1987年   8篇
  1985年   7篇
  1984年   6篇
  1983年   6篇
  1982年   5篇
  1981年   6篇
  1980年   8篇
  1979年   9篇
  1978年   9篇
  1975年   4篇
  1971年   5篇
  1966年   4篇
  1964年   4篇
  1959年   3篇
排序方式: 共有1356条查询结果,搜索用时 15 毫秒
101.
Predatory traces, in which the tracemaker has damaged the prey animal's skeleton to kill and consume it, have a deep fossil history and have received much scientific attention. Several types of predatory traces have been assigned to ichnotaxa, but one of the most studied predatory traces, the wedge-shaped excision produced as a result of attacks mainly by crustaceans on the apertures of gastropod shells, has yet to be described as an ichnotaxon. We propose the ichnogenus Caedichnus to describe the shell damage produced by aperture peeling behavior. Caedichnus is produced by predators that are unable to crush their prey's shells outright. Depending on the predator's peeling ability and the prey's withdrawal depth within the shell, the trace can extend through several whorls of the shell. Aperture peel attacks may fail, allowing such damage to be repaired by surviving gastropods. Thus, the types of attacks that produce Caedichnus may exert selective pressure on prey to evolve better-defended shells (in the case of gastropods) or to inhabit better-defended shells (in the case of hermit crabs). The identification of these trace fossils will enhance our understanding of how predation influences the morphological, and even behavioral, evolution of prey organisms.  相似文献   
102.
103.
The RLK/Pelle class of proteins kinases is composed of over 600 members in Arabidopsis. Many of the proteins in this family are receptor-like kinases (RLK), while others have lost their extracellular domains and are found as cytoplasmic kinases. Proteins in this family that are RLKs have a variety of extracellular domains that drive function in a large number of processes, from cell wall interactions to disease resistance to developmental control. This review will briefly cover the major subclasses of RLK/Pelle proteins and their roles. In addition, two specific groups on RLKs will be discussed in detail, relating recent findings in Arabidopsis and how well these conclusions have been able to be translated to agronomically important species. Finally, some details on kinase activity and signal transduction will be addressed, along with the mystery of RLK/Pelle members lacking kinase enzymatic activity.  相似文献   
104.
The mouse is emerging as an important model for understanding how sensory neocortex extracts cues to guide behavior, yet little is known about how these cues are processed beyond primary cortical areas. Here, we used two-photon calcium imaging in awake mice to compare visual responses in primary visual cortex (V1) and in two downstream target areas, AL and PM. Neighboring V1 neurons had diverse stimulus preferences spanning five octaves in spatial and temporal frequency. By contrast, AL and PM neurons responded best to distinct ranges of stimulus parameters. Most strikingly, AL neurons preferred fast-moving stimuli while PM neurons preferred slow-moving stimuli. By contrast, neurons in V1, AL, and PM demonstrated similar selectivity for stimulus orientation but not for stimulus direction. Based on these findings, we predict that area AL helps guide behaviors involving fast-moving stimuli (e.g., optic flow), while area PM?helps guide behaviors involving slow-moving objects.  相似文献   
105.
The composition of the exopolysaccharide matrix of Pseudomonas putida mt2 biofilms is relatively undefined as well as the contributions of each polymer to ecological fitness. Here, we describe the role of two putative exopolysaccharide gene clusters, putida exopolysaccharide A (pea) and bacterial cellulose (bcs) in biofilm formation and stability, rhizosphere colonization and matrix hydration under water-limiting conditions. Our findings suggest that pea is involved in the production of a novel glucose, galactose, and mannose-rich polymer that contributes to cell-cell interactions necessary for pellicle and biofilm formation and stability. In contrast, Bcs plays a minor role in biofilm formation and stability, although it does contribute to rhizosphere colonization based on a competition assay. We show that pea expression is highly induced transiently under water-limiting conditions but only slightly by high osmolarity, as determined by qRT-PCR. In contrast, both forms of water stress highly induced bcs expression. Cells deficient in making one or more exopolysaccharide experienced greater dehydration-mediated cell-envelope stress, leading to increased alginate promoter activity. However, this did not lead to increased exopolysaccharide production, except in bcs or pea mutants unable to produce alginate, indicating that P. putida compensates by producing, presumably more Pea or Bcs exopolysaccharides, to facilitate biofilm hydration. Collectively, the data suggest that Pea and Bcs contribute to biofilm formation and in turn their presence contributes to fitness under water-limiting conditions, but not to the extent of alginate.  相似文献   
106.
Modification of bacterial surface structures, such as the lipid A portion of lipopolysaccharide (LPS), is used by many pathogenic bacteria to help evade the host innate immune response. Helicobacter pylori, a gram-negative bacterium capable of chronic colonization of the human stomach, modifies its lipid A by removal of phosphate groups from the 1- and 4'-positions of the lipid A backbone. In this study, we identify the enzyme responsible for dephosphorylation of the lipid A 4'-phosphate group in H. pylori, Jhp1487 (LpxF). To ascertain the role these modifications play in the pathogenesis of H. pylori, we created mutants in lpxE (1-phosphatase), lpxF (4'-phosphatase) and a double lpxE/F mutant. Analysis of lipid A isolated from lpxE and lpxF mutants revealed lipid A species with a 1 or 4'-phosphate group, respectively while the double lpxE/F mutant revealed a bis-phosphorylated lipid A. Mutants lacking lpxE, lpxF, or lpxE/F show a 16, 360 and 1020 fold increase in sensitivity to the cationic antimicrobial peptide polymyxin B, respectively. Moreover, a similar loss of resistance is seen against a variety of CAMPs found in the human body including LL37, β-defensin 2, and P-113. Using a fluorescent derivative of polymyxin we demonstrate that, unlike wild type bacteria, polymyxin readily associates with the lpxE/F mutant. Presumably, the increase in the negative charge of H. pylori LPS allows for binding of the peptide to the bacterial surface. Interestingly, the action of LpxE and LpxF was shown to decrease recognition of Helicobacter LPS by the innate immune receptor, Toll-like Receptor 4. Furthermore, lpxE/F mutants were unable to colonize the gastric mucosa of C57BL/6J and C57BL/6J tlr4 -/- mice when compared to wild type H. pylori. Our results demonstrate that dephosphorylation of the lipid A domain of H. pylori LPS by LpxE and LpxF is key to its ability to colonize a mammalian host.  相似文献   
107.
108.
Garver WS 《Current Genomics》2011,12(3):180-189
Childhood overweight and obesity have reached epidemic proportions worldwide, and the increase in weight-associated co-morbidities including premature type 2 diabetes mellitus (T2DM) and atherosclerotic cardiovascular disease will soon become major healthcare and economic problems. A number of studies now indicate that the childhood obesity epidemic which has emerged during the past 30 years is a complex multi-factorial disease resulting from interaction of susceptibility genes with an obesogenic environment. This review will focus on gene-diet interactions suspected of having a prominent role in promoting childhood obesity. In particular, the specific genes that will be presented (FTO, MC4R, and NPC1) have recently been associated with childhood obesity through a genome-wide association study (GWAS) and were shown to interact with nutritional components to increase weight gain. Although a fourth gene (APOA2) has not yet been associated with childhood obesity, this review will also present information on what now represents the best characterized gene-diet interaction in promoting weight gain.  相似文献   
109.
Current antiviral therapy does not cure HIV-infected individuals because the virus establishes lifelong latent infection within long-lived memory T cells as integrated HIV proviral DNA. Here, we report a new therapeutic approach that aims to cure cells of latent HIV infection by rendering latent virus incapable of replication and pathogenesis via targeted cellular mutagenesis of essential viral genes. This is achieved by using a homing endonuclease to introduce DNA double-stranded breaks (dsb) within the integrated proviral DNA, which is followed by triggering of the cellular DNA damage response and error-prone repair. To evaluate this concept, we developed an in vitro culture model of viral latency, consisting of an integrated lentiviral vector with an easily evaluated reporter system to detect targeted mutagenesis events. Using this system, we demonstrate that homing endonucleases can efficiently and selectively target an integrated reporter lentivirus within the cellular genome, leading to mutation in the proviral DNA and loss of reporter gene expression. This new technology offers the possibility of selectively disabling integrated HIV provirus within latently infected cells.  相似文献   
110.
Using evolved pyrrolysyl-tRNA synthetase-tRNA(CUA)(Pyl) pairs, L-phenylalanine, p-iodo-L-phenylalanine and p-bromo-L-phenylalanine have been genetically incorporated into proteins at amber mutation sites in E. coli.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号