Increasing competition in the livestock industry has forced producers to cut costs by adopting new technologies aimed at increasing production efficiency. One particularly promising technology is feeding enzymes as supplements for animal diets. Supplementation of diets for non-ruminants (e.g., swine and poultry) with fibrolytic enzymes, such as cellulases, xylanases and beta-glucanases, increases the feed conversion efficiency and growth rate of the animals. Enzymatic hydrolysis of plant cell wall polymers (e.g., cellulose, xylan, beta-glucans) releases glucose and xylose and eliminates the antinutritional effects of beta-glucans and arabinoxylans. Enzyme supplementation of diets for ruminants has also been shown to improve growth performance, even though the rumen itself represents the most potent fibrolytic fermentation system known. Implementation of this technology in the livestock industry has been limited largely because of the cost of development and production of enzymes. Over the last decade, however, developments in recombinant DNA technology have increased the efficiency of existing microbial production systems and facilitated exploitation of alternative sources of industrial enzymes. The ruminal ecosystem is among the novel enzyme sources currently being explored. Understanding the role of enzymes in feed digestion through characterization of the enzymology and genetics involved in digestion of feedstuffs by ruminants will provide insight required to improve the products currently available to producers. Characterization of genes encoding a variety of hydrolytic enzymes, such as cellulases, xylanases, beta-glucanases, amylases, pectinases, proteases, phytases and tannases, will foster the development of more efficacious enzyme supplements and enzyme expression systems for enhancing nutrient utilization by domestic animals. Characteristics of the original source organism need no longer restrict the production of a useful enzyme. Recent reports of transgenic plants expressing fibrolytic or phytase activity and of transgenic mice able to produce endoglucanase in the pancreas speak to the feasibility of improving feed digestion through genetic modification of the feedstuffs and the animals. 相似文献
Teratomas are benign tumors that form after ectopic injection of embryonic stem (ES) cells into mice and contain derivatives of all primitive germ layers. To study the role of β1 integrin during teratoma formation, we compared teratomas induced by normal and β1-null ES cells. Injection of normal ES cells gave rise to large teratomas. In contrast, β1-null ES cells either did not grow or formed small teratomas with an average weight of <5% of that of normal teratomas. Histological analysis of β1-null teratomas revealed the presence of various differentiated cells, however, a much lower number of host-derived stromal cells than in normal teratomas. Fibronectin, collagen I, and nidogen were expressed but, in contrast to normal teratomas, diffusely deposited in β1-null teratomas. Basement membranes were present but with irregular shape and detached from the cell surface.
Normal teratomas had large blood vessels with a smooth inner surface, containing both host- and ES cell–derived endothelial cells. In contrast, β1-null teratomas had small vessels that were loosely embedded into the connective tissue. Furthermore, endothelial cells were always of host-derived origin and formed blood vessels with an irregular inner surface. Although β1- deficient endothelial cells were absent in teratomas, β1-null ES cells could differentiate in vitro into endothelial cells. The formation of a complex vasculature, however, was significantly delayed and of poor quality in β1-null embryoid bodies. Moreover, while vascular endothelial growth factor induced proliferation of endothelial cells as well as an extensive branching of blood vessels in normal embryoid bodies, it had no effect in β1-null embryoid bodies.
In response to DNA damage, a cell can be forced to permanently exit the cell cycle and become senescent. Senescence provides an early barrier against tumor development by preventing proliferation of cells with damaged DNA. By studying single cells, we show that Cdk activity persists after DNA damage until terminal cell cycle exit. This low level of Cdk activity not only allows cell cycle progression, but also promotes cell cycle exit at a decision point in G2 phase. We find that residual Cdk1/2 activity is required for efficient p21 production, allowing for nuclear sequestration of Cyclin B1, subsequent APC/CCdh1‐dependent degradation of mitotic inducers and induction of senescence. We suggest that the same activity that triggers mitosis in an unperturbed cell cycle enforces senescence in the presence of DNA damage, ensuring a robust response when most needed. 相似文献
The number of applications based on graphene, few-layer graphene, and nanographite is rapidly increasing. A large-scale process for production of these materials is critically needed to achieve cost-effective commercial products. Here, we present a novel process to mechanically exfoliate industrial quantities of nanographite from graphite in an aqueous environment with low energy consumption and at controlled shear conditions. This process, based on hydrodynamic tube shearing, produced nanometer-thick and micrometer-wide flakes of nanographite with a production rate exceeding 500 gh-1 with an energy consumption about 10 Whg-1. In addition, to facilitate large-area coating, we show that the nanographite can be mixed with nanofibrillated cellulose in the process to form highly conductive, robust and environmentally friendly composites. This composite has a sheet resistance below 1.75 Ω/sq and an electrical resistivity of 1.39×10-4 Ωm and may find use in several applications, from supercapacitors and batteries to printed electronics and solar cells. A batch of 100 liter was processed in less than 4 hours. The design of the process allow scaling to even larger volumes and the low energy consumption indicates a low-cost process. 相似文献
Direct sequencing of the mitochondrial displacement loop (D-loop) of shrews
(genus Sorex) for the region between the tRNA(Pro) and the conserved
sequence block-F revealed variable numbers of 79-bp tandem repeats. These
repeats were found in all 19 individuals sequenced, representing three
subspecies and one closely related species of the masked shrew group (Sorex
cinereus cinereus, S. c. miscix, S. c. acadicus, and S. haydeni) and an
outgroup, the pygmy shrew (S. hoyi). Each specimen also possessed an
adjacent 76-bp imperfect copy of the tandem repeats. One individual was
heteroplasmic for length variants consisting of five and seven copies of
the 79-bp tandem repeat. The sequence of the repeats is conducive to the
formation of secondary structure. A termination-associated sequence is
present in each of the repeats and in a unique sequence region 5' to the
tandem array as well. Mean genetic distance between the masked shrew taxa
and the pygmy shrew was calculated separately for the unique sequence
region, one of the tandem repeats, the imperfect repeat, and these three
regions combined. The unique sequence region evolved more rapidly than the
tandem repeats or the imperfect repeat. The small genetic distance between
pairs of tandem repeats within an individual is consistent with a model of
concerted evolution. Repeats are apparently duplicated and lost at a high
rate, which tends to homogenize the tandem array. The rate of D- loop
sequence divergence between the masked and pygmy shrews is estimated to be
15%-20%/Myr, the highest rate observed in D-loops of mammals. Rapid
sequence evolution in shrews may be due either to their high metabolic rate
and short generation time or to the presence of variable numbers of tandem
repeats.
相似文献
Enrichment experiments consisting of additions of nutrients (nitrogen and phosphorus) and humic and fulvic acids were carried out using natural phytoplankton assemblages from Lago Jacaretinga, Central Amazon, Brazil. The addition of nutrients resulted in greatly stimulated primary production whereas addition of humic and fulvic acids had no effect. When both nutrients and humic and fulvic acids were added in combination, algal community response was identical to treatments in which only nutrients had been added. The result contrasts with previous phytoplankton culture studies in which the addition of humic material to the culture media increased production. Comparison of absorbance spectra indicated a severe reduction in the quantity and quality of light in Amazonian black waters relative to that in white waters. 相似文献
Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.
Methods
1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.
Results
We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants (P = 2.35x10−4). This variant was also significant after Bonferroni correction.
Conclusions
These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA. 相似文献