首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   399篇
  免费   48篇
  447篇
  2022年   3篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   5篇
  2015年   17篇
  2014年   19篇
  2013年   19篇
  2012年   35篇
  2011年   33篇
  2010年   13篇
  2009年   17篇
  2008年   18篇
  2007年   21篇
  2006年   17篇
  2005年   16篇
  2004年   7篇
  2003年   10篇
  2002年   10篇
  2001年   16篇
  2000年   15篇
  1999年   11篇
  1998年   5篇
  1997年   3篇
  1996年   4篇
  1995年   3篇
  1994年   8篇
  1993年   4篇
  1992年   5篇
  1991年   7篇
  1990年   3篇
  1989年   15篇
  1988年   6篇
  1987年   9篇
  1986年   9篇
  1985年   11篇
  1984年   4篇
  1983年   3篇
  1980年   5篇
  1979年   2篇
  1978年   4篇
  1977年   2篇
  1976年   3篇
  1975年   2篇
  1972年   3篇
  1968年   3篇
  1965年   2篇
  1940年   1篇
排序方式: 共有447条查询结果,搜索用时 15 毫秒
101.
102.
103.
Gillard  BK; Clement  RG; Marcus  DM 《Glycobiology》1998,8(9):885-890
There are several pathways for the incorporation of sugars into glycosphingolipids (GSL). Sugars can be added to ceramide that contains sphinganine (dihydrosphingosine) synthesized de novo (pathway 1), to ceramide synthesized from sphingoid bases produced by hydrolysis of sphingolipids (pathway 2), and into GSL recycling from the endosomal pathway through the Golgi (pathway 3). We reported previously the surprising observation that SW13 cells, a human adrenal carcinoma cell line, synthesize most of their GSL in pathway 2. We now present data on the synthesis of GSL in four additional cell lines. Approximately 90% of sugar incorporation took place in pathway 2, and 10% or less in pathway 1, in human foreskin fibroblasts and NB41A3 neuroblastoma cells. In contrast, approximately 50-90% of sugar incorporation took place in pathway 1 in C2C12 myoblasts. The C2C12 cells divide more rapidly and synthesize 10-14 times as much GSL as the other three cell lines. In C6 glioma cells, approximately 30% of sugar incorporation occurred in pathway 1 and 60% in pathway 2. There was no relation between the utilization of pathways for GSL and sphingomyelin synthesis in foreskin fibroblasts and C2C12 cells. In both cells pathways 1 and 2 each accounted for 50% of incorporation of choline into sphingomyelin. In five of the six cell lines that we have studied, most GSL synthesis takes place in pathway 2. We suggest that when the need for synthesis is relatively low, as in slowly dividing cells, GSL are synthesized predominantly from sphingoid bases salvaged from the hydrolytic pathway. When cells are dividing more rapidly, the need for increased synthesis is met by upregulating the de novo pathway.   相似文献   
104.
Yeast prions are protein-based genetic elements that produce phenotypes through self-perpetuating changes in protein conformation. For the prion [PSI(+)] this protein is Sup35, which is comprised of a prion-determining region (NM) fused to a translational termination region. [PSI(+)] strains (variants) with different heritable translational termination defects (weak or strong) can exist in the same genetic background. [PSI(+)] variants are reminiscent of mammalian prion strains, which can be passaged in the same mouse strain yet have different disease latencies and brain pathologies. We found that [PSI(+)] variants contain different ratios of Sup35 in the prion and non-prion state that correlate with different translation termination efficiencies. Indeed, the partially purified prion form of Sup35 from a strong [PSI(+)] variant converted purified NM much more efficiently than that of several weak variants. However, this difference was lost in a second round of conversion in vitro. Thus, [PSI(+)] variants result from differences in the efficiency of prion-mediated conversion, and the maintenance of [PSI(+)] variants involves more than nucleated conformational conversion (templating) to NM alone.  相似文献   
105.
106.
107.
Calcium-modulating cyclophilin ligand (CAML) is a ubiquitously expressed protein that is important during thymopoiesis. However, whether it serves a function in mature lymphocytes is unknown. In this article, we show that CAML is essential for survival of peripheral follicular (Fo) B cells. Conditional deletion of CAML in CD19-Cre transgenic mice caused a significant reduction in Fo cell numbers and increased rates of homeostatic proliferation. CAML-deficient Fo cells showed increased cellular turnover and normal proliferative ability. Although CAML-deficient Fo cells responded to AgR stimulation and to B cell activating factor, they displayed decreased survival and increased apoptosis following stimulation with LPS and IL-4 in vitro. Failure to survive was not due to aberrant B cell development in the absence of CAML, because induced deletion of the gene in mature cells resulted in a similar phenotype. These data establish an essential and ongoing role for CAML in the long-term survival of mature B cells.  相似文献   
108.
109.
Novel NS3/4A protease inhibitors comprising quinazoline derivatives as P2 substituent were synthesized. High potency inhibitors displaying advantageous PK properties have been obtained through the optimization of quinazoline P2 substituents in three series exhibiting macrocyclic P2 cyclopentane dicarboxylic acid and P2 proline urea motifs. For the quinazoline moiety it was found that 8-methyl substitution in the P2 cyclopentane dicarboxylic acid series improved on the metabolic stability in human liver microsomes. By comparison, the proline urea series displayed advantageous Caco-2 permeability over the cyclopentane series. Pharmacokinetic properties in vivo were assessed in rat on selected compounds, where excellent exposure and liver-to-plasma ratios were demonstrated for a member of the 14-membered quinazoline substituted P2 proline urea series.  相似文献   
110.
Systematic Monte Carlo simulations of simple lattice models show that the final stage of protein folding is an ordered process where native contacts get locked (i.e., the residues come into contact and remain in contact for the duration of the folding process) in a well‐defined order. The detailed study of the folding dynamics of protein‐like sequences designed as to exhibit different contact energy distributions, as well as different degrees of sequence optimization (i.e., participation of non‐native interactions in the folding process), reveals significant differences in the corresponding locking scenarios—the collection of native contacts and their average locking times, which are largely ascribable to the dynamics of non‐native contacts. Furthermore, strong evidence for a positive role played by non‐native contacts at an early folding stage was also found. Interestingly, for topologically simple target structures, a positive interplay between native and non‐native contacts is observed also toward the end of the folding process, suggesting that non‐native contacts may indeed affect the overall folding process. For target models exhibiting clear two‐state kinetics, the relation between the nucleation mechanism of folding and the locking scenario is investigated. Our results suggest that the stabilization of the folding transition state can be achieved through the establishment of a very small network of native contacts that are the first to lock during the folding process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号