首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   8篇
  137篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   3篇
  2011年   2篇
  2009年   3篇
  2008年   4篇
  2007年   11篇
  2006年   9篇
  2005年   9篇
  2004年   5篇
  2003年   7篇
  2002年   8篇
  2001年   5篇
  2000年   4篇
  1999年   8篇
  1998年   2篇
  1997年   3篇
  1996年   3篇
  1995年   5篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1990年   2篇
  1989年   4篇
  1988年   1篇
  1987年   6篇
  1986年   2篇
  1985年   1篇
  1984年   3篇
  1983年   2篇
  1978年   5篇
  1972年   1篇
  1967年   1篇
排序方式: 共有137条查询结果,搜索用时 12 毫秒
101.
DC-CK1 (CCL18) is a dendritic cell (DC)-specific chemokine expressed in both T and B cell areas of secondary lymphoid organs that preferentially attracts CD45RA(+) T cells. In this study, we further explored the nature of DC-CK1 expressing cells in germinal centers (GCs) of secondary lymphoid organs using a newly developed anti-DC-CK1 mAb. Immunohistochemical analysis demonstrated a remarkable difference in the number of DC-CK1 expressing cells in adjacent GCs within one tonsil, implicating that the expression of DC-CK1 in GCs depends on the activation and/or progression stage of the GC reaction. Using immunohistology and RNA analysis, we demonstrated that GCDC are the source of DC-CK1 production in the GCs. Considering the recently described function of GCDC in (naive) B cell proliferation, isotype switching and Ab production, we investigated the ability of DC-CK1 to attract B lymphocytes. Here we demonstrate that DC-CK1 is a pertussis toxin-dependent chemoattractant for B lymphocytes with a preference in attracting mantle zone (CD38(-)) B cells. The findings that GCDC produce DC-CK1 and attract mantle zone B cells support a key role for GCDC in the development of GCs and memory B cell formation.  相似文献   
102.
Parthenocarpic fruit development in tomato   总被引:5,自引:0,他引:5  
Abstract: Parthenocarpic fruit development is a very attractive trait for growers and consumers. In tomato, three main sources of facultative parthenocarpy, pat, pat-2, pat-3/pat-4, are known to have potential applications in agriculture. The parthenocarpic fruit development in these lines is triggered by a deregulation of the hormonal balance in some specific tissues. Auxins and gibberellins are considered as the key elements in parthenocarpic fruit development of those lines. An increased level of these hormones in the ovary can substitute for pollination and trigger fruit development. This has opened up genetic engineering approaches for parthenocarpy that have given promising results, both in quality and quantity of seedless fruit production.  相似文献   
103.
Migraine is a common neurological disease of two main types: migraine with aura and migraine without aura. Familial clustering suggests that genetic factors are involved in the etiology of migraine. Recently, a gene for familial hemiplegic migraine, a rare autosomal dominant subtype of migraine with aura, was mapped to chromosome 19p13. We tested the involvement of this chromosomal region in 28 unrelated families with the common forms of migraine with and without aura, by following the transmission of the highly informative marker D19S394. Sibpair analysis showed that affected sibs shared the same marker allele more frequently than expected by chance. Our findings thus also suggest the involvement of a gene on 19p13 in the etiology of the common forms of migraine.  相似文献   
104.
105.
The physiological inhibitor of tissue factor (TF).factor VIIa (FVIIa), full-length tissue factor pathway inhibitor (TFPI(FL)) in complex with factor Xa (FXa), has a high affinity for anionic phospholipid membranes. The role of anionic phospholipids in the inhibition of TF.FVIIa-catalyzed FX activation was investigated. FXa generation at a rotating disc coated with TF embedded in a membrane composed of pure phosphatidylcholine (TF.PC) or 25% phosphatidylserine and 75% phosphatidylcholine (TF.PSPC) was measured in the presence of preformed complexes of FXa.TFPI(FL) or FXa.TFPI(1-161) (TFPI lacking the third Kunitz domain and C terminus). At TF.PC, FXa.TFPI(FL) and FXa.TFPI(1-161) showed similar rate constants of inhibition (0.07 x 10(8) M(-1) s(-1) and 0.1 x 10(8) M(-1) s(-1), respectively). With phosphatidylserine present, the rate constant of inhibition for FXa.TFPI(FL) increased 3-fold compared with a 9-fold increase in the rate constant for FXa. TFPI(1-161). Incubation of TF.PSPC with FXa.TFPI(FL) in the absence of FVIIa followed by depletion of solution FXa.TFPI(FL) showed that FXa.TFPI(FL) remained bound at the membrane and pursued its inhibitory activity. This was not observed with FXa.TFPI(1-161) or at TF.PC membranes. These data suggest that the membrane-bound pool of FXa.TFPI(FL) may be of physiological importance in an on-site regulation of TF.FVIIa activity.  相似文献   
106.
Purified PIVKA-II exhibits some factor II (prothrombin) activity in the one-stage coagulation assay and this factor II activity does not come from residual amounts of factor II but originates from PIVKA-II itself. It is shown that PIVKA-II is converted by a normal prothrombinase complex (factor Va and factor Xa adsorbed onto a phospholipid interface) more readily than by phospholipids and factor Xa alone. This suggests that binding between PIVKA-II and factor Va is an essential feature in the formation of the enzyme . substrate complex and from this we infer that a direct interaction between factor Va and prothrombin plays a r?le in the prothrombinase . prothrombin complex.  相似文献   
107.
108.
Summary We describe a family with an increased frequency of cells with premature centromere division (PCD) of all chromosomes in four phenotypically normal individuals. This familial PCD phenomenon is apparently different from the well-described PCD of the X chromosome and from the centromere splitting in cells of patients with Roberts syndrome. Implications for genetic counseling are discussed.  相似文献   
109.
The Na(+)/H(+) exchanger isoform 1 is a ubiquitously expressed integral membrane protein that regulates intracellular pH in mammals. We characterized the structural and functional aspects of the critical transmembrane (TM) segment IV. Each residue was mutated to cysteine in cysteine-less NHE1. TM IV was exquisitely sensitive to mutation with 10 of 23 mutations causing greatly reduced expression and/or activity. The Phe(161) --> Cys mutant was inhibited by treatment with the water-soluble sulfhydryl-reactive compounds [2-(trimethylammonium)ethyl]methanethiosulfonate and [2-sulfonatoethyl]methanethiosulfonate, suggesting it is a pore-lining residue. The structure of purified TM IV peptide was determined using high resolution NMR in a CD(3)OH:CDCl(3):H(2)O mixture and in Me(2)SO. In CD(3)OH: CDCl(3):H(2)O, TM IV was structured but not as a canonical alpha-helix. Residues Asp(159)-Leu(162) were a series of beta-turns; residues Leu(165)-Pro(168) showed an extended structure, and residues Ile(169)-Phe(176) were helical in character. These three structured regions rotated quite freely with respect to the others. In Me(2)SO, the structure was much less defined. Our results demonstrate that TM IV is an unusually structured transmembrane segment that is exquisitely sensitive to mutagenesis and that Phe(161) is a pore-lining residue.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号