首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   815篇
  免费   106篇
  2021年   4篇
  2020年   8篇
  2019年   5篇
  2018年   13篇
  2017年   10篇
  2016年   14篇
  2015年   30篇
  2014年   34篇
  2013年   24篇
  2012年   39篇
  2011年   38篇
  2010年   28篇
  2009年   30篇
  2008年   41篇
  2007年   42篇
  2006年   51篇
  2005年   31篇
  2004年   37篇
  2003年   28篇
  2002年   31篇
  2001年   34篇
  2000年   31篇
  1999年   34篇
  1998年   21篇
  1997年   7篇
  1996年   14篇
  1995年   8篇
  1994年   12篇
  1993年   12篇
  1992年   20篇
  1991年   21篇
  1990年   17篇
  1989年   14篇
  1988年   10篇
  1987年   5篇
  1986年   5篇
  1985年   8篇
  1984年   10篇
  1983年   7篇
  1982年   8篇
  1981年   7篇
  1980年   6篇
  1979年   7篇
  1978年   8篇
  1977年   12篇
  1976年   3篇
  1975年   6篇
  1973年   5篇
  1972年   4篇
  1968年   4篇
排序方式: 共有921条查询结果,搜索用时 15 毫秒
41.
The Cape flora of southern Africa is a remarkable hotspot for plant species diversity and endemism. At a meeting in Zurich in 2004 progress in understanding the evolution of this diversity was reviewed. In this symposium, four papers presenting several of the methods used in this investigation were reported. These papers deal with molecular dating methods, the reconstruction of ancestral habitats, with possible speciation scenarios for the Cape flora, and the importance of the correct sampling strategies.  相似文献   
42.
With the realization that much of the biological diversity on Earth has been generated by discrete evolutionary radiations, there has been a rapid increase in research into the biotic (key innovations) and abiotic (key environments) circumstances in which such radiations took place. Here we focus on the potential importance of population genetic structure and trait genetic architecture in explaining radiations. We propose a verbal model describing the stages of an evolutionary radiation: first invading a suitable adaptive zone and expanding both spatially and ecologically through this zone; secondly, diverging genetically into numerous distinct populations; and, finally, speciating. There are numerous examples of the first stage; the difficulty, however, is explaining how genetic diversification can take place from the establishment of a, presumably, genetically depauperate population in a new adaptive zone. We explore the potential roles of epigenetics and transposable elements (TEs), of neutral process such as genetic drift in combination with trait genetic architecture, of gene flow limitation through isolation by distance (IBD), isolation by ecology and isolation by colonization, the possible role of intra‐specific competition, and that of admixture and hybridization in increasing the genetic diversity of the founding populations. We show that many of the predictions of this model are corroborated. Most radiations occur in complex adaptive zones, which facilitate the establishment of many small populations exposed to genetic drift and divergent selection. We also show that many radiations (especially those resulting from long‐distance dispersal) were established by polyploid lineages, and that many radiating lineages have small genome sizes. However, there are several other predictions which are not (yet) possible to test: that epigenetics has played a role in radiations, that radiations occur more frequently in clades with small gene flow distances, or that the ancestors of radiations had large fundamental niches. At least some of these may be testable in the future as more genome and epigenome data become available. The implication of this model is that many radiations may be hard polytomies because the genetic divergence leading to speciation happens within a very short time, and that the divergence history may be further obscured by hybridization. Furthermore, it suggests that only lineages with the appropriate genetic architecture will be able to radiate, and that such a radiation will happen in a meta‐population environment. Understanding the genetic architecture of a lineage may be an essential part of accounting for why some lineages radiate, and some do not.  相似文献   
43.
Many cellulose degrading and modifying enzymes have distinct parts called carbohydrate binding modules (CBMs). The CBMs have been shown to increase the concentration of enzymes on the insoluble substrate and thereby enhance catalytic activity. It has been suggested that CBMs also have a role in disrupting or dispersing the insoluble cellulose substrate, but dispute remains and explicit evidence of such a mechanism is lacking. We produced the isolated CBMs from two major cellulases (Cel6A and Cel7A) from Trichoderma reesei as recombinant proteins in Escherichia coli. We then studied the viscoelastic properties of native unmodified cellulose nanofibrils (CNF) in combination with the highly purified CBMs to detect possible functional effects of the CBMs on the CNF. The two CBMs showed clearly different effects on the viscoelastic properties of CNF. The difference in effects is noteworthy, yet it was not possible to conclude for example disruptive effects. We discuss here the alternative explanations for viscoelastic effects on CNF caused by CBMs, including the effect of ionic cosolutes.  相似文献   
44.
Three fixation issues related to immunostaining are discussed here: 1) Generally, a tissue block is fixed, then embedded and sectioned (pre-fixation). The type of fixative applied, crosslinking or coagulating, has an impact on selecting an epitope retrieval method. Individual antigens have a fixation–retrieval characteristic. 2) A long fixation time, especially with crosslinking fixatives, may compromise the result of immunostaining. This negative effect varies among different antigens and can be partially restored by applying a more sensitive/efficient detection system such as tyramide amplification. 3) Sections cut from a fresh frozen tissue block usually are acetone fixed (post-fixation). This was accepted as the “gold standard” for a long time. Post-fixation, however, may have serious consequences for preservation of small peptides leaking from the cut open cells, whereas this is not the case with pre-fixed intact cells. Consequently, the concept of an acetone post-fixed cryostat tissue section as “gold standard” no longer exists and a more appropriate use of the terms immunohistochemistry and immunocytochemistry therefore seems justified. For many antibodies, it is not known whether a formalin fixed, paraffin embedded tissue specimen is appropriate. Suggestions are made for creating a positive control cell block for testing such antibodies.  相似文献   
45.
46.
47.
Abstract

Opportunistic sightings and strandings of Caperea marginata (n=196) from the vicinity of Australia and New Zealand (1884 to early 2007) were used to relate geographic and temporal patterns to oceanographic and broad-scale climatic variability. Records were not uniformly distributed along the coast and more (69%) were from Australia than New Zealand. Seven coastal whale ‘hotspots’ were identified which accounted for 61% of records with locality data. Half of the hotspot records were from southeast (37) and northwest (20) Tasmania—others each had 9–15 events. Upwelling and/or high zooplankton abundance has been documented near all whale hotspots. Records of C. marginata occurred in all months, with 75% in spring and summer. Inter-annual variability showed broad agreement between increased whale records (usually in spring/summer) and strongly positive ‘Niño 3.4’ during 1980–1995 but not thereafter. Coastal upwelling and productivity increase during climatic phenomena such as El Niño and are likely to be quickly beneficial to plankton-feeding whales such as C. marginata.  相似文献   
48.
49.
The C-terminal catalytic domains of the 11 mammalian phosphodiesterase families (PDEs) are important drug targets. Five of the 11 PDE families contain less well-characterized N-terminal GAF domains. cGMP is the ligand for the GAF domains in PDEs 2, 5, 6 and 11, and cAMP is the ligand for PDE10. Structurally related tandem GAF domains signalling via cAMP are present in the cyanobacterial adenylate cyclases cyaB1 and cyaB2. Because current high-resolution crystal structures of the tandem GAF domains of PDE2 and cyaB2 do not reveal how cNMP specificity is encoded, we generated chimeras between the tandem GAF domains of cyaB1 and PDE2. Both bind the ligand in the GAF B subdomains. Segmental replacements in the highly divergent beta1-beta3 region of the GAF B subdomain of cyaB1 by the corresponding PDE2 regions switched signalling from cAMP to cGMP. Using 10 chimeric constructs, we demonstrated that, for this switch in purine specificity, only 11% of the sequence of the cyanobacterial GAF B needs to be replaced by PDE2 sequences. We were unable, however, to switch the purine specificity of the PDE2 tandem GAF domain from cGMP to cAMP in reverse constructs, i.e. by replacement of PDE2 segments with those from the cyaB1 GAF tandem domain. The data provide a novel view on the structure-function relationships underlying the purine specificity of cNMP-binding GAF domains and indicate that, as potential drug targets, they must be characterized structurally and biochemically one by one.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号