首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   13篇
  137篇
  2023年   3篇
  2019年   2篇
  2018年   2篇
  2017年   2篇
  2016年   3篇
  2015年   5篇
  2014年   11篇
  2013年   2篇
  2012年   8篇
  2011年   4篇
  2010年   2篇
  2009年   3篇
  2006年   2篇
  2004年   2篇
  2001年   2篇
  2000年   3篇
  1999年   3篇
  1998年   2篇
  1986年   2篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1973年   6篇
  1972年   1篇
  1970年   1篇
  1969年   3篇
  1968年   5篇
  1967年   2篇
  1965年   4篇
  1963年   1篇
  1962年   1篇
  1961年   1篇
  1960年   2篇
  1959年   4篇
  1957年   3篇
  1956年   1篇
  1955年   2篇
  1953年   3篇
  1951年   2篇
  1949年   1篇
  1947年   1篇
  1945年   2篇
  1943年   1篇
  1942年   1篇
  1939年   1篇
  1938年   1篇
  1936年   1篇
  1935年   1篇
  1934年   3篇
排序方式: 共有137条查询结果,搜索用时 9 毫秒
101.
102.
Summary A single tetrad in which one genetical marker had segregated irregularly was analyzed genetically by outcrossing each culture derived from the tetrad to other haploid clones. Regular segregation in the resultant hybrids indicated that the cultures were all haploid. The original ascus was tetratype proving that all four nuclei had survived after reduction. All clones were haploid proving that the irregularities could not have arisen from fusion following an extra mitosis. It is inferred that the extra recessive was the result of an interaction in the hybrid in which a dominant was converted into a recessive allele. The converted clone was identified by the intermediate character of its physiological activity.This work has been supported by grants from the National Cancer Institute of the National Institutes of Health, Public Health Service, Contracts C-1179 and C-2140 and Anheuser-Busch, Inc.  相似文献   
103.
104.
Describing the spatial and temporal dynamics of communities is essential for understanding the impacts of global environmental change on biodiversity and ecosystem functioning. Trait‐based approaches can provide better insight than species‐based (i.e. taxonomic) approaches into community assembly and ecosystem functioning, but comparing species and trait dynamics may reveal important patterns for understanding community responses to environmental change. Here, we used a 33‐year database of fish monitoring to compare the spatio‐temporal dynamics of taxonomic and trait structure in North Sea fish communities. We found that the majority of variation in both taxonomic and trait structure was explained by a pronounced spatial gradient, with distinct communities in the southern and northern North Sea related to depth, sea surface temperature, salinity and bed shear stress. Both taxonomic and trait structure changed significantly over time; however taxonomically, communities in the south and north diverged towards different species, becoming more dissimilar over time, yet they converged towards the same traits regardless of species differences. In particular, communities shifted towards smaller, faster growing species with higher thermal preferences and pelagic water column position. Although taxonomic structure changed over time, its spatial distribution remained relatively stable, whereas in trait structure, the southern zone of the North Sea shifted northward and expanded, leading to homogenization. Our findings suggest that global environmental change, notably climate warming, will lead to convergence towards traits more adapted for novel environments regardless of species composition.  相似文献   
105.
Critical transitions between alternative stable states have been shown to occur across an array of complex systems. While our ability to identify abrupt regime shifts in natural ecosystems has improved, detection of potential early-warning signals previous to such shifts is still very limited. Using real monitoring data of a key ecosystem component, we here apply multiple early-warning indicators in order to assess their ability to forewarn a major ecosystem regime shift in the Central Baltic Sea. We show that some indicators and methods can result in clear early-warning signals, while other methods may have limited utility in ecosystem-based management as they show no or weak potential for early-warning. We therefore propose a multiple method approach for early detection of ecosystem regime shifts in monitoring data that may be useful in informing timely management actions in the face of ecosystem change.  相似文献   
106.
107.
A growing body of evidence suggests that an altered level or function of the neurotrophic insulin-like growth factor-1 receptor (IGF-1R), which supports neuronal survival, may underlie neurodegeneration. This study has focused on the expression and function of the IGF-1R in scrapie-infected neuroblastoma cell lines. Our results show that scrapie infection induces a 4-fold increase in the level of IGF-1R in two independently scrapie-infected neuroblastomas, ScN2a and ScN1E-115 cells, and that the increased IGF-1R level was accompanied by increased IGF-1R mRNA levels. In contrast to the elevated IGF-1R expression in ScN2a, receptor binding studies revealed an 80% decrease in specific (125)I-IGF-1-binding sites compared with N2a cells. This decrease in IGF-1R-binding sites was shown to be caused by a 7-fold decrease in IGF-1R affinity. Furthermore, ScN2a showed no significant difference in IGF-1 induced proliferative response, despite the noticeable elevated IGF-1R expression, putatively explained by the reduced IGF-1R binding affinity. Additionally, IGF-1 stimulated IGF-1Rbeta tyrosine phosphorylation showed no major change in the dose-response between the cell types, possibly due to altered tyrosine kinase signaling in scrapie-infected neuroblastoma cells. Altogether these data indicate that scrapie infection affects the expression, binding affinity, and signal transduction mediated by the IGF-1R in neuroblastoma cells. Altered IGF-1R expression and function may weaken the trophic support in scrapie-infected neurons and thereby contribute to neurodegeneration in prion diseases.  相似文献   
108.
The effects of low doses of ionizing radiation on cellular development in the nervous system are presently unclear. The focus of the present study was to examine low-dose γ-radiation-induced effects on the differentiation of neuronal cells and on the development of neural stem cells to glial cells. Human neuroblastoma SH-SY5Y cells were exposed to (137)Cs γ rays at different stages of retinoic acid-induced neuronal differentiation, and neurite formation was determined 6 days after exposure. When SH-SY5Y cells were exposed to low-dose-rate γ rays at the onset of differentiation, the number of neurites formed per cell was significantly less after exposure to either 10, 30 or 100 mGy compared to control cells. Exposure to 10 and 30 mGy attenuated differentiation of immature C17.2 mouse-derived neural stem cells to glial cells, as verified by the diminished expression of glial fibrillary acidic protein. Proteomic analysis of the neuroblastoma cells by 2D-PAGE after 30 mGy irradiation showed that proteins involved in neuronal development were downregulated. Proteins involved in cell cycle and proliferation were altered in both cell lines after exposure to 30 mGy; however, the rate of cell proliferation was not affected in the low-dose range. The radiation-induced attenuation of differentiation and the persistent changes in protein expression is indicative of an epigenetic rather than a cytotoxic mechanism.  相似文献   
109.

Background

An imbalance in Matrix MetalloProteases (MMPs) and Tissue Inhibitors of MMPs (TIMPs) contributes to Chronic Obstructive Pulmonary Disease (COPD) development. Longitudinal studies investigating Single Nucleotide Polymorphisms (SNPs) in MMPs and TIMPs with respect to COPD development and lung function decline in the general population are lacking.

Methods

We genotyped SNPs in MMP1 (G-1607GG), MMP2 (-1306 C/T), MMP9 (3 tagging SNPs), MMP12 (A-82G and Asn357Ser) and TIMP1 (Phe124Phe and Ile158Ile) in 1390 Caucasians with multiple FEV1 measurements from a prospective cohort study in the general population. FEV1 decline was analyzed using linear mixed effect models adjusted for confounders. Analyses of the X-chromosomal TIMP1 gene were stratified according to sex. All significant associations were repeated in an independent general population cohort (n = 1152).

Results

MMP2 -1306 TT genotype carriers had excess FEV1 decline (-4.0 ml/yr, p = 0.03) compared to wild type carriers. TIMP1 Ile158Ile predicted significant excess FEV1 decline in both males and females. TIMP1 Phe124Phe predicted significant excess FEV1 decline in males only, which was replicated (p = 0.10) in the second cohort. The MMP2 and TIMP1 Ile158Ile associations were not replicated. Although power was limited, we did not find associations with COPD development.

Conclusions

We for the first time show that TIMP1 Phe124Phe contributes to excess FEV1 decline in two independent prospective cohorts, albeit not quite reaching conventional statistical significance in the replication cohort. SNPs in MMPs evidently do not contribute to FEV1 decline in the general population.  相似文献   
110.
The accelerating loss of biodiversity and ecosystem services worldwide has accentuated a long-standing debate on the role of diversity in stabilizing ecological communities and has given rise to a field of research on biodiversity and ecosystem functioning (BEF). Although broad consensus has been reached regarding the positive BEF relationship, a number of important challenges remain unanswered. These primarily concern the underlying mechanisms by which diversity increases resilience and community stability, particularly the relative importance of statistical averaging and functional complementarity. Our understanding of these mechanisms relies heavily on theoretical and experimental studies, yet the degree to which theory adequately explains the dynamics and stability of natural ecosystems is largely unknown, especially in marine ecosystems. Using modelling and a unique 60-year dataset covering multiple trophic levels, we show that the pronounced multi-decadal variability of the Southern California Current System (SCCS) does not represent fundamental changes in ecosystem functioning, but a linear response to key environmental drivers channelled through bottom-up and physical control. Furthermore, we show strong temporal asynchrony between key species or functional groups within multiple trophic levels caused by opposite responses to these drivers. We argue that functional complementarity is the primary mechanism reducing community variability and promoting resilience and stability in the SCCS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号