首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   120篇
  2017年   6篇
  2016年   7篇
  2015年   11篇
  2014年   5篇
  2013年   20篇
  2012年   14篇
  2011年   18篇
  2010年   10篇
  2009年   17篇
  2008年   18篇
  2007年   22篇
  2006年   30篇
  2005年   20篇
  2004年   26篇
  2003年   21篇
  2002年   24篇
  2001年   29篇
  2000年   23篇
  1999年   29篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   12篇
  1992年   15篇
  1991年   19篇
  1990年   29篇
  1989年   16篇
  1988年   17篇
  1987年   14篇
  1986年   11篇
  1985年   12篇
  1984年   13篇
  1983年   9篇
  1982年   12篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   10篇
  1975年   5篇
  1974年   8篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1970年   5篇
  1969年   5篇
  1966年   5篇
排序方式: 共有715条查询结果,搜索用时 15 毫秒
81.
Cancer cells that escape induction therapy are a major cause of relapse. Understanding metabolic alterations associated with drug resistance opens up unexplored opportunities for the development of new therapeutic strategies. Here, we applied a broad spectrum of technologies including RNA sequencing, global untargeted metabolomics, and stable isotope labeling mass spectrometry to identify metabolic changes in P-glycoprotein overexpressing T-cell acute lymphoblastic leukemia (ALL) cells, which escaped a therapeutically relevant daunorubicin treatment. We show that compared with sensitive ALL cells, resistant leukemia cells possess a fundamentally rewired central metabolism characterized by reduced dependence on glutamine despite a lack of expression of glutamate-ammonia ligase (GLUL), a higher demand for glucose and an altered rate of fatty acid β-oxidation, accompanied by a decreased pantothenic acid uptake capacity. We experimentally validate our findings by selectively targeting components of this metabolic switch, using approved drugs and starvation approaches followed by cell viability analyses in both the ALL cells and in an acute myeloid leukemia (AML) sensitive/resistant cell line pair. We demonstrate how comparative metabolomics and RNA expression profiling of drug-sensitive and -resistant cells expose targetable metabolic changes and potential resistance markers. Our results show that drug resistance is associated with significant metabolic costs in cancer cells, which could be exploited using new therapeutic strategies.  相似文献   
82.
83.
Genome-wide association studies have identified GALNT2 as a candidate gene in lipid metabolism, but it is not known how the encoded enzyme ppGalNAc-T2, which contributes to the initiation of mucin-type O-linked glycosylation, mediates this effect. In two probands with elevated plasma high-density lipoprotein cholesterol and reduced triglycerides, we identified a mutation in GALNT2. It is shown that carriers have improved postprandial triglyceride clearance, which is likely attributable to attenuated glycosylation of apolipoprotein (apo) C-III, as observed in their plasma. This protein inhibits lipoprotein lipase (LPL), which hydrolyses plasma triglycerides. We show that an apoC-III-based peptide is a substrate for ppGalNAc-T2 while its glycosylation by the mutant enzyme is impaired. In addition, neuraminidase treatment of apoC-III which removes the sialic acids from its glycan chain decreases its potential to inhibit LPL. Combined, these data suggest that ppGalNAc-T2 can affect lipid metabolism through apoC-III glycosylation, thereby establishing GALNT2 as a lipid-modifying gene.  相似文献   
84.
Fungi, especially basidiomycetous litter decomposers, are pivotal to the turnover of soil organic matter in forest soils. Many litter decomposing fungi have a well-developed capacity to translocate resources in their mycelia, a feature that may significantly affect carbon (C) and nitrogen (N) dynamics in decomposing litter. In an eight-month long laboratory study we investigated how the external availability of N affected the decomposition of Scots pine needles, fungal biomass production, N retention and N-mineralization by two litter decomposing fungi – Marasmius androsaceus and Mycena epipterygia. Glycine additions had a general, positive effect on fungal biomass production and increased accumulated needle mass loss after 8 months, suggesting that low N availability may limit fungal growth and activity in decomposing pine litter. Changes in the needle N pool reflected the dynamics of the fungal mycelium. During late decomposition stages, redistribution of mycelium and N out from the decomposed needles was observed for M. epipterygia, suggesting autophagous self degradation.  相似文献   
85.
The main objective of this essay is to validate some of the principal, currently competing, mammalian consciousness-brain theories by comparing these theories with data on both cognitive abilities and brain organization in birds. Our argument is that, given that multiple complex cognitive functions are correlated with presumed consciousness in mammals, this correlation holds for birds as well. Thus, the neuroanatomical features of the forebrain common to both birds and mammals may be those that are crucial to the generation of both complex cognition and consciousness. The general conclusion is that most of the consciousness-brain theories appear to be valid for the avian brain. Even though some specific homologies are unresolved, most of the critical structures presumed necessary for consciousness in mammalian brains have clear homologues in avian brains. Furthermore, considering the fact that the reptile-bird brain transition shows more structural continuity than the stem amniote-mammalian transition, the line drawn at the origin of mammals for consciousness by several of the theorists seems questionable. An equally important point is that consciousness cannot be ruled out in the absence of complex cognition; it may in fact be the case that consciousness is a necessary prerequisite for complex cognition.  相似文献   
86.
An updated inventory of about 150 human DNA repair genes is described. The compilation includes genes encoding DNA repair enzymes, some genes associated with cellular responses to DNA damage, and other genes associated with genetic instability or sensitivity to DNA damaging agents. The updated human DNA repair genes table (http://www.cgal.icnet.uk/DNA_Repair_Genes.htmlhttp://www.cgal.icnet.uk/DNA_Repair_Genes.html) is a research and reference tool that directly links to several databases: Gene Cards, Online Mendelian Inheritance in Man, the NCBI MapViewer for chromosome position, and the NCBI Entrez database for the reference nucleotide sequence. This article discusses the approximately 25 genes added, since the original version of the table was first produced in 2001, and some other revisions.  相似文献   
87.
The molecular mechanisms underlying the relationship between low-density lipoprotein (LDL) and the risk of atherosclerosis are not clear. Therefore, detailed information about the protein composition of LDL may contribute to reveal its role in atherogenesis and the mechanisms that lead to coronary disease in humans. Here, we sought to map the proteins in human LDL by a proteomic approach. LDL was isolated by two-step discontinuous density-gradient ultracentrifugation and the proteins were separated with two-dimensional gel electrophoresis and identified with peptide mass fingerprinting, using matrix assisted laser desorption/ionization-time of flight-mass spectrometry and with amino acid sequencing using electrospray ionization tandem mass spectrometry. These procedures identified apo B-100, apo C-II, apo C-III (three isoforms), apo E (four isoforms), apo A-I (two isoforms), apo A-IV, apo J and apo M (three isoforms not previously described). In addition, three proteins that have not previously been identified in LDL were found: serum amyloid A-IV (two isoforms), calgranulin A, and lysozyme C. The identities of apo M, calgranulin A, and lysozyme C were confirmed by sequence information obtained after collision-induced dissociation fragmentation of peptides characteristic for these proteins. Moreover, the presence of lysozyme C was further corroborated by demonstrating enriched hydrolytic activity in LDL against Micrococcus lysodeikticus. These results indicate that in addition to the dominating apo B-100, LDL contains a number of other apolipoproteins, many of which occur in different isoforms. The demonstration, for the first time, that LDL contains calgranulin A and lysozyme C raises the possibility that LDL proteins may play hitherto unknown role(s) in immune and inflammatory reactions of the arterial wall.  相似文献   
88.
Feng J  Lindahl PA 《Biochemistry》2004,43(6):1552-1559
The Ni-Fe-S-containing C-cluster of carbon monoxide dehydrogenases is the active site for catalyzing the reversible oxidation of CO to CO(2). This cluster can be stabilized in redox states designated C(ox), C(red1), C(int), and C(red2). What had until recently been the best-supported mechanism of catalysis involves a one-electron reductive activation of C(ox) to C(red1) and a catalytic cycle in which the C(red1) state binds and oxidizes CO, forming C(red2) and releasing CO(2). Recent experiments cast doubt on this mechanism, as they imply that activation requires reducing the C-cluster to a state more reduced than C(red1). In the current study, redox titration and stopped-flow kinetic experiments were performed to assess the previous results and conclusions. Problems in previous methods were identified, and related experiments for which such problems were eliminated or minimized afforded significantly different results. In contrast to the previous study, activation did not correlate with reduction of Fe-S clusters in the enzyme, suggesting that the potential required for activation was milder than that required to reduce these clusters (i.e., E(0)(act) > -420 mV vs SHE). Using enzyme preactivated in solutions that were poised at various potentials, lag phases were observed prior to reaching steady-state CO oxidation activities. Fits of the Nernst equation to the corresponding lag-vs-potential plot yielded a midpoint potential of -150 +/- 50 mV. This value probably reflects E degrees ' for the C(ox)/C(red1) couple, and it suggests that C(red1) is indeed active in catalysis.  相似文献   
89.
90.
Streptococcus pyogenes is a Gram-positive bacterium that causes several diseases, including acute tonsillitis and toxic shock syndrome. The surface-localized M protein, which is the most extensively studied virulence factor of S. pyogenes, has an approximately 50-residue N-terminal hypervariable region (HVR) that plays a key role in the escape of the host immunity. Despite the extensive sequence variability in this region, many HVRs specifically bind human C4b-binding protein (C4BP), a plasma protein that inhibits complement activation. Although the more conserved parts of M protein are known to have dimeric coiled-coil structure, it is unclear whether the HVR also is a coiled coil. Here, we use nuclear magnetic resonance (NMR) to study the conformational properties of HVRs from M4 and M22 proteins in isolation and in complex with the M protein binding portion of C4BP. We conclude that the HVRs of M4 and M22 are folded as coiled coils and that the folded nucleus of the M4 HVR has a length of approximately 27 residues. Moreover, we demonstrate that the C4BP binding surface of M4-N is found within a region of four heptad repeats. Using molecular modeling, we propose a model for the structure of the M4 HVR that is consistent with our experimental information from NMR spectroscopy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号