首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   120篇
  2017年   6篇
  2016年   7篇
  2015年   11篇
  2014年   5篇
  2013年   20篇
  2012年   14篇
  2011年   18篇
  2010年   10篇
  2009年   17篇
  2008年   18篇
  2007年   22篇
  2006年   30篇
  2005年   20篇
  2004年   26篇
  2003年   21篇
  2002年   24篇
  2001年   29篇
  2000年   23篇
  1999年   29篇
  1998年   9篇
  1997年   6篇
  1996年   8篇
  1995年   6篇
  1994年   9篇
  1993年   12篇
  1992年   15篇
  1991年   19篇
  1990年   29篇
  1989年   16篇
  1988年   17篇
  1987年   14篇
  1986年   11篇
  1985年   12篇
  1984年   13篇
  1983年   9篇
  1982年   12篇
  1981年   8篇
  1980年   8篇
  1979年   9篇
  1978年   9篇
  1977年   8篇
  1976年   10篇
  1975年   5篇
  1974年   8篇
  1973年   11篇
  1972年   6篇
  1971年   7篇
  1970年   5篇
  1969年   5篇
  1966年   5篇
排序方式: 共有715条查询结果,搜索用时 15 毫秒
21.
Heat-induced depyrimidination of deoxyribonucleic acid in neutral solution   总被引:17,自引:0,他引:17  
T Lindahl  O Karlstr?m 《Biochemistry》1973,12(25):5151-5154
  相似文献   
22.
23.
24.
Many strains of Streptococcus pyogenes are known to express a receptor for IgA. The complete nucleotide sequence of the gene for such a receptor, protein Arp4, has been determined. The deduced amino acid sequence of 386 residues includes a signal sequence of 41 amino acids and a putative membrane anchor region, both of which are homologous to similar regions in other streptococcal surface proteins. The processed form of the IgA receptor has a length of 345 amino acids and a calculated molecular weight of 39544. The N-terminal sequence of the processed form is different from that previously found for a similar IgA receptor isolated from a S. pyogenes strain of type M60. The sequence of protein Arp4 shows extensive homology to the C-terminal half of streptococcal M proteins, but not to the streptococcal IgG receptor protein G or staphlyococcal protein A. Apart from the membrane anchor, this homology includes a sequence of 119 amino acid residues containing three repeated units and a 54-residue sequence without repeats. The protein expressed in Escherichia coli is found in the periplasmic space, in which it constitutes the major protein. Protein Arp4 is the first example of a surface protein that has both immunoglobulin-binding capacity and structural features characteristic of M proteins.  相似文献   
25.
26.
W Shin  P R Stafford  P A Lindahl 《Biochemistry》1992,31(26):6003-6011
Redox titrations of carbon monoxide dehydrogenase (CODH) from Clostridium thermoaceticum were performed using the reductant CO and the oxidant thionin. Titrations were followed at 420 nm, a wavelength sensitive to redox changes of the iron-sulfur clusters in the enzyme. When CODH was oxidized by just enough thionin to maximize A420, two molecules of CO per mole of CODH dimer (4 equiv/mol) reduced the enzyme fully. Likewise, 4 equiv/mol of thionin oxidized the fully-reduced enzyme to the point where A420 maximized. The four n = 1 redox sites which titrated in this region were designated group I sites. They include at least two iron-sulfur clusters, [Fe/S]A and [Fe/S]B, and two other sites, A' and B'. The [Fe4S4]2+/1+ cluster in CODH is included in this group. [Fe/S]B and B' have reduction potentials (at pH 8) below -480 mV vs NHE; [Fe/S]A and A' have reduction potentials above that value. The reduction potential of either [Fe/S]B or B' is near to the CO/CO2 couple at pH 8 (-622 mV). When CODH was oxidized by more than enough thionin to maximize A420, some of the excess thionin oxidized the so-called group II redox sites. These sites have reduction potentials more positive than group I and do not exhibit changes at 420 nm when titrated. Titration of group II sites required 1-2 equiv/mol. EPR of reduced group II sites exhibited the gav = 1.82 signal. When these sites were oxidized, the only signal present had g values at 2.075, 2.036, and 1.983.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
27.
Abstract: Possible effects on the physiological activity and culturability of soil microorganisms by different soil dispersion procedures, and effects on activity caused by extracting bacteria from soil, were investigated. There was no apparent difference in cfu's with dispersion of a silty loam soil and a loamy sand soil with pyrophosphate as compared to dispersion in NaCl. Substrate-induced respiration was reduced in the silty loam soil, and methanol oxidation was reduced in the loamy sand soil with dispersion in pyrophosphate, and the soil pH was irreversibly increased by the treatment. Extracted bacterial fractions had lower numbers of culturable cells as percentage of the total number of bacteria in each fraction, lower respiration rates and no methanol oxidation activity as compared to the soil slurry both before and after extraction. The physiological activity was apparently not affected by the number of cells extracted. This indicates that the increased extraction rate of indigenous soil bacteria obtained by effective disruption of aggregates and detachment of cells from surfaces, only results in increased extraction of cells that have been physiologically changed as a result of the extraction process.  相似文献   
28.
29.
30.
Background: The base excision–repair pathway is the major cellular defence mechanism against spontaneous DNA damage. The enzymes involved have been highly conserved during evolution. Base excision–repair has been reproduced previously with crude cell-free extracts of bacterial or human origin. To further our understanding of base excision–repair, we have attempted to reconstitute the pathway in vitro using purified enzymes.Results We report here the successful reconstitution of the base excision–repair pathway with five purified enzymes from Escherichia coli: uracil-DNA glycosylase, a representative of the DNA glycosylases that remove various lesions from DNA; the AP endonuclease IV that specifically cleaves at abasic sites; RecJ protein which excises a 5′ terminal deoxyribose-phosphate residue; DNA polymerase I; and DNA ligase. The reaction proceeds with high efficiency in the absence of additional factors in the reconstituted system. Four of the enzymes are absolutely required for completion of the repair reaction. An unusual feature we have discovered is that the pathway branches after enzymatic incision at an abasic DNA site. RecJ protein is required for the major reaction, which involves replacement of only a single nucleotide at the damaged site; in its absence, an alternative pathway is observed, with generation of longer repair patches by the 5′ nuclease function of DNA polymerase I.Conclusion Repair of uracil in DNA is achieved by a very short-patch excision–repair process involving five different enzymes. No additional protein factors seem to be required. There is a minor, back-up pathway that uses replication factors to generate longer repair patches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号