首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8291篇
  免费   710篇
  国内免费   3篇
  2023年   29篇
  2022年   75篇
  2021年   108篇
  2020年   69篇
  2019年   75篇
  2018年   112篇
  2017年   103篇
  2016年   181篇
  2015年   320篇
  2014年   367篇
  2013年   444篇
  2012年   565篇
  2011年   564篇
  2010年   416篇
  2009年   358篇
  2008年   502篇
  2007年   505篇
  2006年   461篇
  2005年   484篇
  2004年   511篇
  2003年   445篇
  2002年   477篇
  2001年   72篇
  2000年   56篇
  1999年   118篇
  1998年   139篇
  1997年   56篇
  1996年   80篇
  1995年   64篇
  1994年   73篇
  1993年   85篇
  1992年   80篇
  1991年   62篇
  1990年   74篇
  1989年   47篇
  1988年   62篇
  1987年   59篇
  1986年   55篇
  1985年   49篇
  1984年   69篇
  1983年   48篇
  1982年   65篇
  1981年   73篇
  1980年   46篇
  1979年   46篇
  1978年   40篇
  1977年   43篇
  1976年   35篇
  1975年   25篇
  1974年   27篇
排序方式: 共有9004条查询结果,搜索用时 31 毫秒
991.
TNF-like weak inducer of apoptosis, or TWEAK, is a relatively new member of the TNF-ligand superfamily. Ligation of the TWEAK receptor Fn14 by TWEAK has proinflammatory effects on fibroblasts, synoviocytes, and endothelial cells. Several of the TWEAK-inducible cytokines are important in the pathogenesis of kidney diseases; however, whether TWEAK can induce a proinflammatory effect on kidney cells is not known. We found that murine mesangial cells express cell surface TWEAK receptor. TWEAK stimulation of mesangial cells led to a dose-dependent increase in CCL2/MCP-1, CCL5/RANTES, CXCL10/IFN-gamma-induced protein 10 kDa, and CXCL1/KC. The induced levels of chemokines were comparable to those found following mesangial cell exposure to potent proinflammatory stimuli such as TNF-alpha + IL-1beta. CXCL11/interferon-inducible T cell alpha chemoattractant, CXCR5, mucosal addressin cell adhesion molecule-1, and VCAM-1 were up-regulated by TWEAK as well. TWEAK stimulation of mesangial cells resulted in an increase in phosphorylated Ikappa-B, while pretreatment with an Ikappa-B phosphorylation inhibitor significantly blocked chemokine induction, implicating activation of the NF-kappaB signaling pathway in TWEAK-induced chemokine secretion. Importantly, the Fn14-mediated proinflammatory effects of TWEAK on kidney cells were confirmed using mesangial cells derived from Fn14-deficient mice and by injection in vivo of TWEAK into wild-type vs Fn14-deficient mice. Finally, TWEAK-induced chemokine secretion was prevented by treatment with novel murine anti-TWEAK Abs. We conclude that TWEAK induces mesangial cells to secrete proinflammatory chemokines, suggesting a prominent role for TWEAK in the pathogenesis of renal injury. Our results support Ab inhibition of TWEAK as a potential new approach for the treatment of chemokine-dependent inflammatory kidney diseases.  相似文献   
992.
Plasmacytoid dendritic cells (pDCs) recognize pathogen-associated molecules, particularly viral, and represent an important mechanism in innate defense. They may however, also have roles in steady-state tolerogenic responses at mucosal sites. pDCs can be isolated from blood, mucosa, and lymph nodes (LNs). Although pDCs can express peripherally derived Ags in LNs and at mucosal sites, it is not clear whether pDCs actually migrate from the periphery in lymph or whether LN pDCs acquire Ags by other mechanisms. To determine whether pDCs migrate in lymph, intestine or liver-draining LNs were removed and thoracic duct leukocytes (TDLs) were collected. TDLs expressing MHC-II and CD45R, but not TCRalphabeta or CD45RA, were then analyzed. These enriched TDLs neither transcribe type I IFNs nor secrete inflammatory cytokines in response to viral stimuli in vitro or after a TLR7/8 stimulus in vivo. In addition, these TDLs do not express CD5, CD90, CD200, or Siglec-H, but do express Ig, and therefore represent B cells, despite their lack of CD45RA expression. Intestinal and hepatic lymph are hence devoid of bona fide pDCs under both steady-state conditions and after TLR7/8 stimulation. This shows that any role for pDCs in Ag-specific T cell activation or tolerance must differ from the roles of classical dendritic cells, because it cannot result from peripheral Ag capture, followed by migration of pDCs via lymph to the LN.  相似文献   
993.
Pseudomonas aeruginosa keratitis destroys the cornea in susceptible Th1 responder C57BL/6 (B6), but not resistant Th2 responder (BALB/c) mice. To determine whether single Ig IL-1R-related molecule (SIGIRR) played a role in resistance, mRNA and protein expression levels were tested. Both were constitutively expressed in the cornea of the two mouse groups. A disparate mRNA and protein expression pattern was detected in the cornea of BALB/c vs B6 mice after infection. SIGIRR protein decreased significantly in BALB/c over B6 mice at 1 day postinfection. Thus, BALB/c mice were injected with an anti-SIGIRR Ab or IgG control. Anti-SIGIRR Ab over control-treated mice showed increased corneal opacity, stromal damage, and bacterial load. Corneal mRNA levels for IL-1beta, MIP-2, IL-1R1, TLR4, IL-18, and IFN-gamma and protein levels for IL-1beta and MIP-2 also were significantly up-regulated in anti-SIGIRR Ab over control mice, while no changes in polymorphonuclear cell number, IL-4, or IL-10 mRNA expression were detected. To further define the role of SIGIRR, RAW264.7 macrophage-like cells were transiently transfected with SIGIRR and stimulated with heat-killed P. aeruginosa or LPS. SIGIRR transfection significantly decreased mRNA levels for IL-1R1, TLR4, and type 1 immune response-associated cytokines (IL-12, IL-18, and IFN-gamma) as well as proinflammatory cytokines IL-1beta and MIP-2 protein expression. SIGIRR also negatively regulated IL-1 and LPS, but not poly(I:C)-mediated signaling and NF-kappaB activation. These data provide evidence that SIGIRR is critical in resistance to P. aeruginosa corneal infection by down-regulating type 1 immunity, and that it negatively regulates IL-1 and TLR4 signaling.  相似文献   
994.
Epigallocatechin gallate (EGCG) increases the formation of cytosolic lipid droplets by a mechanism that is independent of the rate of triglyceride biosynthesis and involves an enhanced fusion between lipid droplets, a process that is crucial for their growth in size. EGCG treatment reduced the secretion of both triglycerides and apolipoprotein B-100 (apoB-100) VLDLs but not of transferrin, albumin, or total proteins, indicating that EGCG diverts triglycerides from VLDL assembly to storage in the cytosol. This is further supported by the observed increase in both intracellular degradation of apoB-100 and ubiquitination of the protein (indicative of increased proteasomal degradation) in EGCG-treated cells. EGCG did not interfere with the microsomal triglyceride transfer protein, and the effect of EGCG on the secretion of VLDLs was found to be independent of the LDL receptor. Thus, our results indicate that EGCG promotes the accumulation of triglycerides in cytosolic lipid droplets, thereby diverting lipids from the assembly of VLDL to storage in the cytosol. Our results also indicate that the accumulation of lipids in the cytosol is not always associated with increased secretion of VLDL.  相似文献   
995.
Respiratory syncytial virus (RSV) preferentially infects airway epithelial cells, causing bronchiolitis, upper respiratory infections, asthma exacerbations, chronic obstructive pulmonary disease exacerbations, and pneumonia in immunocompromised hosts. A replication intermediate of RSV is dsRNA. This is an important ligand for both the innate immune receptor, TLR3, and protein kinase R (PKR). One known effect of RSV infection is the increased responsiveness of airway epithelial cells to subsequent bacterial ligands (i.e., LPS). In this study, we examined a possible role for RSV infection in increasing amounts and responsiveness of another TLR, TLR3. These studies demonstrate that RSV infection of A549 and human tracheobronchial epithelial cells increases the amounts of TLR3 and PKR in a time-dependent manner. This leads to increased NF-kappaB activity and production of the inflammatory cytokine IL-8 following a later exposure to dsRNA. Importantly, TLR3 was not detected on the cell surface at baseline but was detected on the cell surface after RSV infection. The data demonstrate that RSV, via an effect on TLR3 and PKR, sensitizes airway epithelial cells to subsequent dsRNA exposure. These findings are consistent with the hypothesis that RSV infection sensitizes the airway epithelium to subsequent viral and bacterial exposures by up-regulating TLRs and increasing their membrane localization.  相似文献   
996.
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length.  相似文献   
997.
During Bacillus subtilis sporulation, SpoIIIE is required for translocation of the trapped forespore chromosome across the sporulation septum, for compartmentalization of cell-specific gene expression, and for membrane fusion after engulfment. We isolated mutations within the SpoIIIE membrane domain that block localization and function. One mutant protein initially localizes normally and completes DNA translocation, but shows reduced membrane fusion after engulfment. Fluorescence recovery after photobleaching experiments demonstrate that in this mutant the sporulation septum remains open, allowing cytoplasmic contents to diffuse between daughter cells, suggesting that it blocks membrane fusion after cytokinesis as well as after engulfment. We propose that SpoIIIE catalyses these topologically opposite fusion events by assembling or disassembling a proteinaceous fusion pore. Mutants defective in SpoIIIE assembly also demonstrate that the ability of SpoIIIE to provide a diffusion barrier is directly proportional to its ability to assemble a focus at the septal midpoint during DNA translocation. Thus, SpoIIIE mediates compartmentalization by two distinct mechanisms: the SpoIIIE focus first provides a temporary diffusion barrier during DNA translocation, and then mediates the completion of membrane fusion after division to provide a permanent diffusion barrier. SpoIIIE-like proteins might therefore serve to couple the final step in cytokinesis, septal membrane fusion, to the completion of chromosome segregation.  相似文献   
998.
Post-translational modifications are essential for a variety of functions, such as the translocation, activation, regulation, and, ultimately, degradation of proteins. The amino-terminal (N-terminal) region is a particularly active area for such alterations. Three types of reactions predominate: limited proteolysis to remove one or more amino acids; modification of the alpha-amino group; and side-chain-specific changes. The N-terminal peptidases expose penultimate residues, providing new substrates for peptidase or transferase action. These enzymes can act sequentially or competitively to influence a protein's longevity, location or activity. N-terminal modifying enzymes (NTMEs) might target a protein for ubiquitination and degradation or protect a protein from rapid turnover. The N-terminal peptidases might also have important roles in processing the peptides that are released from the proteasome. Plant NTMEs have roles in senescence, meiosis and defense, and proposed roles in polar auxin transport.  相似文献   
999.
Flagellar gene networks are fascinating, owing to their complexity - they usually coordinate the expression of more than 40 genes - and particular wiring that elicits temporal expression coupled to organelle morphogenesis. Moreover, many of the lessons learned from flagellar regulation are generally applicable to type III secretion systems. Our understanding of flagellar networks is rapidly expanding to include diverse organisms, as well as deepening to enable the development of predictive wiring diagrams. Numerous regulators control the regulation of flagella, and one of the next challenges in the field is to integrate flagellar gene control into master blueprints of global gene expression.  相似文献   
1000.
A carbohydrate binding module, CBM4-2, derived from the xylanase (Xyn 10A) of Rhodothermus marinus has been used as a scaffold for molecular diversification. Its binding specificity has been evolved to recognise a quite different target, a human monoclonal IgG4. In order to understand the basis for this drastic change in specificity we have further investigated the target recognition of the IgG4-specific CBMs. Firstly, we defined that the structure target recognised by the selected CBM-variants was the protein and not the carbohydrates attached to the glycoprotein. We also identified key residues involved in the new specificity and/or responsible for the swap in specificity, from xylan to human IgG4. Specific changes present in all these CBMs included mutations not introduced in the design of the library from which the specific clones were selected. Reversion of such mutations led to a complete loss of binding to the target molecule, suggesting that they are critical for the recognition of human IgG4. Together with the mutations introduced at will, they had transformed the CBM scaffold into a protein binder. We have thus shown that the scaffold of CBM4-2 is able to harbour molecular recognition for either carbohydrate or protein structures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号