首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10479篇
  免费   1025篇
  国内免费   3篇
  2022年   91篇
  2021年   138篇
  2020年   83篇
  2019年   100篇
  2018年   126篇
  2017年   127篇
  2016年   221篇
  2015年   374篇
  2014年   435篇
  2013年   526篇
  2012年   684篇
  2011年   669篇
  2010年   476篇
  2009年   419篇
  2008年   599篇
  2007年   595篇
  2006年   535篇
  2005年   561篇
  2004年   592篇
  2003年   541篇
  2002年   543篇
  2001年   139篇
  2000年   112篇
  1999年   158篇
  1998年   156篇
  1997年   82篇
  1996年   109篇
  1995年   86篇
  1994年   93篇
  1993年   115篇
  1992年   139篇
  1991年   118篇
  1990年   123篇
  1989年   93篇
  1988年   124篇
  1987年   116篇
  1986年   99篇
  1985年   87篇
  1984年   93篇
  1983年   71篇
  1982年   80篇
  1981年   85篇
  1980年   68篇
  1979年   65篇
  1978年   52篇
  1977年   64篇
  1976年   55篇
  1974年   51篇
  1973年   46篇
  1971年   44篇
排序方式: 共有10000条查询结果,搜索用时 375 毫秒
971.
By changing habitat conditions, ecosystem engineers increase niche diversity and have profound effects on the distribution and abundances of other organisms. Although many ecosystems contain several engineering species, it is still unclear how the coexistence of multiple engineers affects the physical habitat and the structure of the community on a landscape scale. Here, we investigated through a large‐scale field manipulation how three coexisting engineers on intertidal flats (cockles Cerastoderma edule; lugworms Arenicola marina; blue mussels Mytilus edulis) influence the functional composition of the local macrobenthic community and what the consequences are at the landscape level. By using biological trait analysis (BTA), we show that on the local scale biogenic changes in sediment accumulation and organic matter content translated into specific shifts in the distribution of functional traits within the community. At a landscape scale, the co‐occurrence of multiple ecosystem engineers resulted in the spatial separation of different functional groups, i.e. different functional groups dominated unique complementary habitats. Our results emphasize the role of co‐occurring multiple engineers in shaping natural communities, thus contributing to a better knowledge of community assembly rules. This understanding can profitably be used to improve ecosystem‐based management and conservation actions.  相似文献   
972.
973.
974.
Highly abundant microRNAs (miRNAs) in small RNA sequencing libraries make it difficult to obtain efficient measurements of more lowly expressed species. We present a new method that allows for the selective blocking of specific, abundant miRNAs during preparation of sequencing libraries. This technique is specific with little off-target effects and has no impact on the reproducibility of the measurement of non-targeted species. In human plasma samples, we demonstrate that blocking of highly abundant hsa-miR-16–5p leads to improved detection of lowly expressed miRNAs and more precise measurement of differential expression overall. Furthermore, we establish the ability to target a second abundant miRNA and to multiplex the blocking of two miRNAs simultaneously. For small RNA sequencing, this technique could fill a similar role as do ribosomal or globin removal technologies in messenger RNA sequencing.  相似文献   
975.
Cre recombinase catalyzes the cleavage and religation of DNA at loxP sites. The enzyme is a homotetramer in its functional state, and the symmetry of the protein complex enforces a pseudo-palindromic symmetry upon the loxP sequence. The Cre-lox system is a powerful tool for many researchers. However, broader application of the system is limited by the fixed sequence preferences of Cre, which are determined by both the direct DNA contacts and the homotetrameric arrangement of the Cre monomers. As a first step toward achieving recombination at arbitrary asymmetric target sites, we have broken the symmetry of the Cre tetramer assembly. Using a combination of computational and rational protein design, we have engineered an alternative interface between Cre monomers that is functional yet incompatible with the wild-type interface. Wild-type and engineered interface halves can be mixed to create two distinct Cre mutants, neither of which are functional in isolation, but which can form an active heterotetramer when combined. When these distinct mutants possess different DNA specificities, control over complex assembly directly discourages recombination at unwanted half-site combinations, enhancing the specificity of asymmetric site recombination. The engineered Cre mutants exhibit this assembly pattern in a variety of contexts, including mammalian cells.  相似文献   
976.
Submicronic fungal fragments have been observed in in vitro aerosolization experiments. The occurrence of these particles has therefore been suggested to contribute to respiratory health problems observed in mold-contaminated indoor environments. However, the role of submicronic fragments in exacerbating adverse health effects has remained unclear due to limitations associated with detection methods. In the present study, we report the development of an indirect immunodetection assay that utilizes chicken polyclonal antibodies developed against spores from Aspergillus versicolor and high-resolution field emission scanning electron microscopy (FESEM). Immunolabeling was performed with A. versicolor fragments immobilized and fixed onto poly-l-lysine-coated polycarbonate filters. Ninety percent of submicronic fragments and 1- to 2-μm fragments, compared to 100% of >2-μm fragments generated from pure freeze-dried mycelial fragments of A. versicolor, were positively labeled. In proof-of-concept experiments, air samples collected from moldy indoor environments were evaluated using the immunolabeling technique. Our results indicated that 13% of the total collected particles were derived from fungi. This fraction comprises 79% of the fragments that were detected by immunolabeling and 21% of the spore particles that were morphologically identified. The methods reported in this study enable the enumeration of fungal particles, including submicronic fragments, in a complex heterogeneous environmental sample.  相似文献   
977.
978.
979.
980.
Two main hypotheses have been proposed to explain the diversification of the Caatinga biota. The riverine barrier hypothesis (RBH) claims that the São Francisco River (SFR) is a major biogeographic barrier to gene flow. The Pleistocene climatic fluctuation hypothesis (PCH) states that gene flow, geographic genetic structure and demographic signatures on endemic Caatinga taxa were influenced by Quaternary climate fluctuation cycles. Herein, we analyse genetic diversity and structure, phylogeographic history, and diversification of a widespread Caatinga lizard (Cnemidophorus ocellifer) based on large geographical sampling for multiple loci to test the predictions derived from the RBH and PCH. We inferred two well‐delimited lineages (Northeast and Southwest) that have diverged along the Cerrado–Caatinga border during the Mid‐Late Miocene (6–14 Ma) despite the presence of gene flow. We reject both major hypotheses proposed to explain diversification in the Caatinga. Surprisingly, our results revealed a striking complex diversification pattern where the Northeast lineage originated as a founder effect from a few individuals located along the edge of the Southwest lineage that eventually expanded throughout the Caatinga. The Southwest lineage is more diverse, older and associated with the Cerrado–Caatinga boundaries. Finally, we suggest that C. ocellifer from the Caatinga is composed of two distinct species. Our data support speciation in the presence of gene flow and highlight the role of environmental gradients in the diversification process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号