首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8657篇
  免费   779篇
  国内免费   3篇
  9439篇
  2023年   30篇
  2022年   80篇
  2021年   110篇
  2020年   71篇
  2019年   76篇
  2018年   115篇
  2017年   106篇
  2016年   187篇
  2015年   326篇
  2014年   379篇
  2013年   452篇
  2012年   576篇
  2011年   577篇
  2010年   419篇
  2009年   362篇
  2008年   512篇
  2007年   512篇
  2006年   469篇
  2005年   497篇
  2004年   518篇
  2003年   456篇
  2002年   486篇
  2001年   87篇
  2000年   63篇
  1999年   127篇
  1998年   142篇
  1997年   58篇
  1996年   82篇
  1995年   67篇
  1994年   74篇
  1993年   86篇
  1992年   91篇
  1991年   70篇
  1990年   77篇
  1989年   52篇
  1988年   71篇
  1987年   69篇
  1986年   69篇
  1985年   61篇
  1984年   86篇
  1983年   60篇
  1982年   73篇
  1981年   79篇
  1980年   56篇
  1979年   60篇
  1978年   48篇
  1977年   49篇
  1976年   47篇
  1975年   36篇
  1974年   39篇
排序方式: 共有9439条查询结果,搜索用时 15 毫秒
991.
Activation of volume regulated chloride channels (VRCCs) has been shown to be cardioprotective in ischemic preconditioning (IPC) of isolated hearts but the underlying molecular mechanisms remain unclear. Recent independent studies support that ClC-3, a ClC voltage-gated chloride channel, may function as a key component of the VRCCs. Thus, ClC-3 knockout (Clcn3(-/-)) mice and their age-matched heterozygous (Clcn3(+/-)) and wild-type (Clcn3(+/+)) littermates were used to test whether activation of VRCCs contributes to cardioprotection in early and/or second-window IPC. Targeted disruption of ClC-3 gene caused a decrease in the body weight but no changes in heart/body weight ratio. Telemetry ECG and echocardiography revealed no differences in ECG and cardiac function under resting conditions among all groups. Under treadmill stress (10 m/min for 10 min), the Clcn3(-/-) mice had significant slower heart rate (648±12 bpm) than Clcn3(+/+) littermates (737±19 bpm, n=6, P<0.05). Ex vivo IPC in the isolated working-heart preparations protected cardiac function during reperfusion and significantly decreased apoptosis and infarct size in all groups. In vivo early IPC significantly reduced infarct size in all groups including Clcn3(-/-) mice (22.7±3.7% vs control 40.1±4.3%, n=22, P=0.004). Second-window IPC significantly reduced apoptosis and infarction in Clcn3(+/+) (22.9±3.2% vs 45.7±5.4%, n=22, P<0.001) and Clcn3(+/-) mice (27.5±4.1% vs 42.2±5.7%, n=15, P<0.05) but not in Clcn3(-/-) littermates (39.8±4.9% vs 41.5±8.2%, n=13, P>0.05). Impaired cell volume regulation of the Clcn3(-/-) myocytes may contribute to the failure of cardioprotection by second-window IPC. These results strongly support that activation of VRCCs may play an important cardioprotective role in second-window IPC.  相似文献   
992.
The nonstructural protein NS1 of influenza A virus blocks the development of host antiviral responses by inhibiting polyadenylation of cellular pre-mRNA. NS1 also promotes the synthesis of viral proteins by stimulating mRNA translation. Here, we show that recombinant NS1 proteins of human pandemic H1N1/2009, avian highly pathogenic H5N1, and low pathogenic H5N2 influenza strains differentially affected these two cellular processes: NS1 of the two avian strains, in contrast to NS1 of H1N1/2009, stimulated translation of reporter mRNA in cell-free translation system; NS1 of H5N1 was an effective inhibitor of cellular pre-mRNA polyadenylation in A549 cells, unlike NS1 of H5N2 and H1N1/2009. We identified key amino acids in NS1 that contribute to its activity in these two basic cellular processes. Thus, we identified strain-specific differences between influenza virus NS1 proteins in pre-mRNA polyadenylation and mRNA translation.  相似文献   
993.
Fibroblast growth factors (FGFs) play a central role in two processes essential for lens transparency—fiber cell differentiation and gap junction–mediated intercellular communication (GJIC). Using serum-free primary cultures of chick lens epithelial cells (DCDMLs), we investigated how the FGF and bone morphogenetic protein (BMP) signaling pathways positively cooperate to regulate lens development and function. We found that culturing DCDMLs for 6 d with the BMP blocker noggin inhibits the canonical FGF-to-ERK pathway upstream of FRS2 activation and also prevents FGF from stimulating FRS2- and ERK-independent gene expression, indicating that BMP signaling is required at the level of FGF receptors. Other experiments revealed a second type of BMP/FGF interaction by which FGF promotes expression of BMP target genes as well as of BMP4. Together these studies reveal a novel mode of cooperation between the FGF and BMP pathways in which BMP keeps lens cells in an optimally FGF-responsive state and, reciprocally, FGF enhances BMP-mediated gene expression. This interaction provides a mechanistic explanation for why disruption of either FGF or BMP signaling in the lens leads to defects in lens development and function.  相似文献   
994.
The purpose of this study is to investigate the expression patterns and role of Notch signaling in human endometrial cells. Notch receptors, Notch 1-3 were expressed in both endometrial epithelial and stromal cells. Notch ligands, Jag1 and Dll4 and Notch target genes, Hes1 and Hey1 were predominantly expressed in endometrial epithelial cells and scarce in stromal cells. Increased de novo synthesis of Dll4 or Jag1 in stromal cells by retroviral delivery significantly induced Hes1 and Hey1. Evaluations of global gene expression by microarrays revealed that more than 400 genes in stromal cells were significantly regulated by Jag1. Gene annotation-based functional analysis classified these genes into biological processes of cell adhesion, cell structure and motility, cell communication, cell cycle, and angiogenesis. This study provides evidence that Notch ligands control the Notch gene activities and may enhance development of human endometrium.  相似文献   
995.
This study investigated the effects of light intensity, temperature, and phosphorus limitation on the peptide production of the cyanobacteria Microcystis PCC 7806 and Anabaena 90. Microcystis PCC 7806 produced two microcystin variants and three cyanopeptolins, whereas Anabaena 90 produced four microcystin variants, three anabaenopeptins, and two anabaenopeptilides. Microcystin and cyanopeptolin contents varied by a factor 2–3, whereas the anabaenopeptins and anabaenopeptilides of Anabaena varied more strongly. Under phosphorus limitation, peptide production rates increased with the specific growth rate. The response of peptide production to light intensity and temperature was more complex: in many cases peptide production decreased with specific growth rate. We observed compensatory changes of different peptide variants: decreased cyanopeptolin A and C contents were accompanied by increased cyanopeptolin 970 contents, and decreased anabaenopeptin A and C contents were accompanied by increased anabaenopeptilide 90B contents. Compensatory dynamics in peptide production may enable cyanobacteria to sustain stable peptide levels in a variable environment.  相似文献   
996.
A novel strategy for production of T cell clone-specific antiserum is described. Clones that are both antigen-specific and alloreactive can be injected in small numbers i.v. into a strain which expresses the appropriate alloantigens, inducing consistently high-titered antisera containing antibodies to the unique T cell receptor molecules on these cells. The antisera characterized in this report block activation of these cells by either antigen plus autologous class II products or alloantigen. Furthermore, in the absence of antigen, the antiserum strongly stimulates the specific clones to divide, and to synthesize and secrete various proteins. Consistent with the findings of other investigators, the antiserum immunoprecipitates a disulfide-linked dimer of 90,000 m.w. from the surfaces of cells with the appropriate specificity.  相似文献   
997.
Human tissue kallikrein 14 (KLK14) is a novel extracellular serine protease. Clinical data link KLK14 expression to several diseases, primarily cancer; however, little is known of its (patho)-physiological role. To functionally characterize KLK14, we expressed and purified recombinant KLK14 in mature and proenzyme forms and determined its expression pattern, specificity, regulation, and in vitro substrates. By using our novel immunoassay, the normal and/or diseased skin, breast, prostate, and ovary contained the highest concentration of KLK14. Serum KLK14 levels were significantly elevated in prostate cancer patients compared with healthy males. KLK14 displayed trypsin-like specificity with high selectivity for P1-Arg over Lys. KLK14 activity could be regulated as follows: 1) by autolytic cleavage leading to enzymatic inactivation; 2) by the inhibitory serpins alpha1-antitrypsin, alpha2-antiplasmin, antithrombin III, and alpha1-antichymotrypsin with second order rate constants (k(+2)/Ki) of 49.8, 23.8, 1.48, and 0.224 microM(-1) min(-1), respectively, as well as plasminogen activator inhibitor-1; and 3) by citrate and zinc ions, which exerted stimulatory and inhibitory effects on KLK14 activity, respectively. We also expanded the in vitro target repertoire of KLK14 to include collagens I-IV, fibronectin, laminin, kininogen, fibrinogen, plasminogen, vitronectin, and insulin-like growth factor-binding proteins 2 and 3. Our results indicate that KLK14 may be implicated in several facets of tumor progression, including growth, invasion, and angiogenesis, as well as in arthritic disease via deterioration of cartilage. These findings may have clinical implications for the management of cancer and other disorders in which KLK14 activity is elevated.  相似文献   
998.
Fei Zhou  Ying Yin  Ting Su  Linda Yu  Chang-An Yu 《BBA》2012,1817(12):2103-2109
The effect of molecular oxygen on the electron transfer activity of the cytochrome bc1 complex was investigated by determining the activity of the complex under the aerobic and anaerobic conditions. Molecular oxygen increases the activity of Rhodobacter sphaeroides bc1 complex up to 82%, depending on the intactness of the complex. Since oxygen enhances the reduction rate of heme bL, but shows no effect on the reduction rate of heme bH, the effect of oxygen in the electron transfer sequence of the cytochrome bc1 complex is at the step of heme bL reduction during bifurcated oxidation of ubiquinol.  相似文献   
999.
The localization of visual areas in the human cortex is typically based on mapping the retinotopic organization with functional magnetic resonance imaging (fMRI). The most common approach is to encode the response phase for a slowly moving visual stimulus and to present the result on an individual's reconstructed cortical surface. The main aims of this study were to develop complementary general linear model (GLM)-based retinotopic mapping methods and to characterize the inter-individual variability of the visual area positions on the cortical surface. We studied 15 subjects with two methods: a 24-region multifocal checkerboard stimulus and a blocked presentation of object stimuli at different visual field locations. The retinotopic maps were based on weighted averaging of the GLM parameter estimates for the stimulus regions. In addition to localizing visual areas, both methods could be used to localize multiple retinotopic regions-of-interest. The two methods yielded consistent retinotopic maps in the visual areas V1, V2, V3, hV4, and V3AB. In the higher-level areas IPS0, VO1, LO1, LO2, TO1, and TO2, retinotopy could only be mapped with the blocked stimulus presentation. The gradual widening of spatial tuning and an increase in the responses to stimuli in the ipsilateral visual field along the hierarchy of visual areas likely reflected the increase in the average receptive field size. Finally, after registration to Freesurfer's surface-based atlas of the human cerebral cortex, we calculated the mean and variability of the visual area positions in the spherical surface-based coordinate system and generated probability maps of the visual areas on the average cortical surface. The inter-individual variability in the area locations decreased when the midpoints were calculated along the spherical cortical surface compared with volumetric coordinates. These results can facilitate both analysis of individual functional anatomy and comparisons of visual cortex topology across studies.  相似文献   
1000.
The early inflammatory response to influenza virus infection contributes to severe lung disease and continues to pose a serious threat to human health. The mechanisms by which neutrophils gain entry to the respiratory tract and their role during pathogenesis remain unclear. Here, we report that neutrophils significantly contributed to morbidity in a pathological mouse model of influenza virus infection. Using extensive immunohistochemistry, bone marrow transfers, and depletion studies, we identified neutrophils as the predominant pulmonary cellular source of the gelatinase matrix metalloprotease (MMP) 9, which is capable of digesting the extracellular matrix. Furthermore, infection of MMP9-deficient mice showed that MMP9 was functionally required for neutrophil migration and control of viral replication in the respiratory tract. Although MMP9 release was toll-like receptor (TLR) signaling-dependent, MyD88-mediated signals in non-hematopoietic cells, rather than neutrophil TLRs themselves, were important for neutrophil migration. These results were extended using multiplex analyses of inflammatory mediators to show that neutrophil chemotactic factor, CCL3, and TNFα were reduced in the Myd88 −/− airways. Furthermore, TNFα induced MMP9 secretion by neutrophils and blocking TNFα in vivo reduced neutrophil recruitment after infection. Innate recognition of influenza virus therefore provides the mechanisms to induce recruitment of neutrophils through chemokines and to enable their motility within the tissue via MMP9-mediated cleavage of the basement membrane. Our results demonstrate a previously unknown contribution of MMP9 to influenza virus pathogenesis by mediating excessive neutrophil migration into the respiratory tract in response to viral replication that could be exploited for therapeutic purposes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号