首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33723篇
  免费   3064篇
  国内免费   2439篇
  2024年   66篇
  2023年   369篇
  2022年   627篇
  2021年   1318篇
  2020年   962篇
  2019年   1180篇
  2018年   1158篇
  2017年   795篇
  2016年   1194篇
  2015年   2025篇
  2014年   2246篇
  2013年   2494篇
  2012年   3039篇
  2011年   2835篇
  2010年   1693篇
  2009年   1506篇
  2008年   1833篇
  2007年   1647篇
  2006年   1505篇
  2005年   1239篇
  2004年   1155篇
  2003年   985篇
  2002年   892篇
  2001年   719篇
  2000年   657篇
  1999年   591篇
  1998年   327篇
  1997年   314篇
  1996年   298篇
  1995年   248篇
  1994年   265篇
  1993年   180篇
  1992年   320篇
  1991年   295篇
  1990年   246篇
  1989年   229篇
  1988年   192篇
  1987年   156篇
  1986年   146篇
  1985年   152篇
  1984年   142篇
  1983年   103篇
  1982年   90篇
  1980年   59篇
  1979年   75篇
  1978年   69篇
  1977年   58篇
  1976年   67篇
  1975年   64篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
951.
PNAS-4, a novel pro-apoptotic gene, was activated during the early response to DNA damage. Previous studies have shown that hPNAS-4 can inhibit tumor growth when over-expressed in ovarian cancer cells. However, the underlying action mechanism remains elusive. In this work, we found that hPNAS-4 expression was significantly increased in SKOV3 cells when exposed to cisplatin, methyl methanesulfonate or mitomycin C, and that its overexpression could induce proliferation inhibition, S phase arrest and apoptosis in A2780s and SKOV3 ovarian cancer cells. The S phase arrest caused by hPNAS-4 was associated with up-regulation of p21. p21 is p53-dispensable and correlates with activation of ERK, and activation of the Cdc25A-Cdk2-Cyclin E/Cyclin A pathway, while the pro-apoptotic effects of hPNAS-4 were mediated by activation of caspase-9 and -3 other than caspase-8, and accompanied by release of AIF, Smac and cytochrome c into the cytosol. Taken together, these data suggest a new mechanism by which hPNAS-4 inhibits proliferation of ovarian cancer cells by inducing S phase arrest and apoptosis via activation of Cdc25A-Cdk2-Cyclin E/Cyclin A axis and mitochondrial dysfunction-mediated caspase-dependent and -independent apoptotic pathways. To our knowledge, we provide the first molecular evidence for the potential application of hPNAS-4 as a novel target in ovarian cancer gene therapy.  相似文献   
952.
953.
Thermostable amylopullulanases can catalyse the hydrolysis of both α-1,4 and α-1,6 glucosidic bonds and are of considerable interest in the starch saccharification industry. In this study, the gene Apu-Tk encoding an extracellular amylopullulanase was cloned from an extremely thermophilic anaerobic archaeon Thermococcus kodakarensis KOD1. Apu-Tk encodes an 1100-amino acid protein with a 27-residue signal peptide, which has a predicted mass of 125 kDa after signal peptide cleavage. Sequence alignments showed that Apu-Tk contains the five regions conserved in all GH57 family proteins. Full-length Apu-Tk was expressed in Escherichia coli and purified to homogeneity. The purified enzyme displayed both pullulanase and amylase activity. The optimal temperature for Apu-Tk to hydrolyse pullulan and soluble starch was >100 °C. Apu-Tk was also active at a broad range of pH (4–7), with an optimum pH of ~5.0–5.5. Apu-Tk also retained >30% of its original activity and partially folded globular structure in the presence of 8% SDS or 10% β-mercaptoethanol. The high yield, broad pH range, and stability of Apu-Tk implicate it as a potential enzyme for industrial applications.  相似文献   
954.
Cabbage Fusarium wilt (CFW) is a destructive disease causing great losses to cabbage (Brassica oleracea L. var. capitata L.) production worldwide. At present, there are few reports concerning molecular marker research on cabbage resistance to CFW. In this study, 160 double haploid (DH) lines were obtained from the F1 population of a 99–77 (highly resistant to CFW) × 99–91 (highly susceptible to CFW) cross. Insertion–deletion (InDel) markers were designed according to the reference genome sequence of cabbage and the whole-genome re-sequencing data of the two parents. A genetic map of chromosome C06 including seven InDel markers was constructed based on the DH population. Thus, FOC (resistance gene to Fusarium oxysporum f. sp. conglutinans) was located on chromosome C06 and two InDel markers out of the seven, M10 and A1, flanked the gene at 1.2 and 0.6 cM, respectively. Marker A1 revealed a significant consistency with the phenotype assay in the F2 population as well as in 40 inbred lines (96 and 82 %, respectively). This study lays the foundation for fine mapping and cloning of the FOC gene and for marker-assisted selection in cabbage resistance breeding.  相似文献   
955.
Apoptosis is an important aspect of a number of biological processes, from embryogenesis to the stress–injury response. It plays a central role in balancing cell proliferation and tissue remodeling activity in many organisms. In the present study, apoptosis in 14 days post infection schistosomula was evaluated using TUNEL (terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling) assays and DAPI staining. Additionally, flow cytometry using the Annexin V-FITC/propidium iodide (PI) (Annexin V/PI) assay confirmed the percentage of early apoptotic, late apoptotic, and necrotic cells in 14 and 23 days post infection worms. Conserved Domain Database (CDD) BLAST analysis and alignment analysis of known schistosome proteins demonstrated the feasibility of detecting the activity of caspase-3 and -7 using the caspase-3/7 Glo analysis assay. Analysis of caspase-3 and -7 activities in schistosome demonstrated that both caspases were active in each developmental stage of Schistosoma japonicum, but was highest in the 14 days post infection schistosomula. Additionally, the caspase peptide inhibitor (Z-VAD-FMK) inhibited the caspase-3/7 activity at all developmental stages examined. Therefore, we hypothesized that two main signaling pathways are involved in apoptosis in S. japonicum, the caspase cascade and the mitochondrial-initiated pathway. We have constructed a model of these two pathways, including how they may interact and their biological outcomes. qRT-PCR analyses of the gene expression profiles of apoptosis-related genes supported our hypothesis of the relationship between the apoptotic pathway and parasite development. The data presented here demonstrates that apoptosis is an important biological process for the survival and development of the schistosome, and identifies potential novel therapeutic targets.  相似文献   
956.
957.
958.
Ventricular septal defect (VSD) is the most common form of congenital heart diseases. Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases involved in causal cardiac tissue remodeling. We studied the changes of circulating MMP-2 and MMP-9 activities in the patients with VSD severity and closure. There were 96 children with perimembranous VSD enrolled in this study. We assigned the patients into three groups according to the ratio of VSD diameter/diameter of aortic root (Ao). They were classified as below: Trivial (VSD/Ao ratio ≤ 0.2), Small (0.2 < VSD/Ao ≤ 0.3) and Median (0.3 < VSD/Ao) group. Plasma MMP-2 and MMP-9 activities were assayed by gelatin zymography.There was a significant higher MMP-2 activity in the VSD (Trivial, Small and Median) groups compared with that in Control group. The plasma MMP-9 activity showed a similar trend as the findings in MMP-2 activity. After one year follow-up, a significant difference in the MMP-9 activity was found between VSD spontaneous closure and non-closure groups. In conclusion, a positive trend between the severity of VSD and activities of MMP-2 and MMP-9 was found. Our data imply that MMP-2 and MMP-9 activities may play a role in the pathogenesis of VSD.  相似文献   
959.
Porphyromonas gingivalis is a major pathogen in the initiation and progression of periodontal disease, which is recognized as a common complication of diabetes. ICAM‐1 expression by human gingival fibroblasts (HGFs) is crucial for regulating local inflammatory responses in inflamed periodontal tissues. However, the effect of P. gingivalis in a high‐glucose situation in regulating HGF function is not understood. The P. gingivalis strain CCUG25226 was used to study the mechanisms underlying the modulation of HGF ICAM‐1 expression by invasion of high‐glucose‐treated P. gingivalis (HGPg). A high‐glucose condition upregulated fimA mRNA expression in P. gingivalis and increased its invasion ability in HGFs. HGF invasion with HGPg induced increases in the expression of ICAM‐1. By using specific inhibitors and short hairpin RNA (shRNA), we have demonstrated that the activation of p38 MAPK and Akt pathways is critical for HGPg‐induced ICAM‐1 expression. Luciferase reporters and chromatin immunoprecipitation assays suggest that HGPg invasion increases NF‐κB‐ and Sp1‐DNA‐binding activities in HGFs. Inhibition of NF‐κB and Sp1 activations blocked the HGPg‐induced ICAM‐1 promoter activity and expression. The effect of HGPg on HGF signalling and ICAM‐1 expression is mediated by CXC chemokine receptor 4 (CXCR4). Our findings identify the molecular pathways underlying HGPg‐dependent ICAM‐1 expression in HGFs, providing insight into the effect of P. gingivalis invasion in HGFs.  相似文献   
960.

Background

Centromeres are essential for chromosome segregation, yet their DNA sequences evolve rapidly. In most animals and plants that have been studied, centromeres contain megabase-scale arrays of tandem repeats. Despite their importance, very little is known about the degree to which centromere tandem repeats share common properties between different species across different phyla. We used bioinformatic methods to identify high-copy tandem repeats from 282 species using publicly available genomic sequence and our own data.

Results

Our methods are compatible with all current sequencing technologies. Long Pacific Biosciences sequence reads allowed us to find tandem repeat monomers up to 1,419 bp. We assumed that the most abundant tandem repeat is the centromere DNA, which was true for most species whose centromeres have been previously characterized, suggesting this is a general property of genomes. High-copy centromere tandem repeats were found in almost all animal and plant genomes, but repeat monomers were highly variable in sequence composition and length. Furthermore, phylogenetic analysis of sequence homology showed little evidence of sequence conservation beyond approximately 50 million years of divergence. We find that despite an overall lack of sequence conservation, centromere tandem repeats from diverse species showed similar modes of evolution.

Conclusions

While centromere position in most eukaryotes is epigenetically determined, our results indicate that tandem repeats are highly prevalent at centromeres of both animal and plant genomes. This suggests a functional role for such repeats, perhaps in promoting concerted evolution of centromere DNA across chromosomes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号