首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103145篇
  免费   8189篇
  国内免费   6883篇
  2024年   128篇
  2023年   1158篇
  2022年   1916篇
  2021年   4915篇
  2020年   3323篇
  2019年   4129篇
  2018年   4064篇
  2017年   2908篇
  2016年   4203篇
  2015年   6391篇
  2014年   7347篇
  2013年   7948篇
  2012年   9464篇
  2011年   8509篇
  2010年   5146篇
  2009年   4632篇
  2008年   5309篇
  2007年   4778篇
  2006年   4224篇
  2005年   3478篇
  2004年   2983篇
  2003年   2537篇
  2002年   2209篇
  2001年   1908篇
  2000年   1840篇
  1999年   1670篇
  1998年   960篇
  1997年   940篇
  1996年   944篇
  1995年   848篇
  1994年   790篇
  1993年   549篇
  1992年   873篇
  1991年   711篇
  1990年   637篇
  1989年   501篇
  1988年   426篇
  1987年   380篇
  1986年   304篇
  1985年   341篇
  1984年   242篇
  1983年   217篇
  1982年   161篇
  1981年   112篇
  1980年   94篇
  1979年   135篇
  1978年   95篇
  1977年   88篇
  1976年   96篇
  1974年   112篇
排序方式: 共有10000条查询结果,搜索用时 312 毫秒
991.
992.
Chemical signal-mediated biological communication is common within bacteria and between bacteria and their hosts. Many plant-associated bacteria respond to unknown plant compounds to regulate bacterial gene expression. However, the nature of the plant compounds that mediate such interkingdom communication and the underlying mechanisms remain poorly characterized. Xanthomonas campestris pv. campestris (Xcc) causes black rot disease on brassica vegetables. Xcc contains an orphan LuxR regulator (XccR) which senses a plant signal that was validated to be glucose by HPLC-MS. The glucose concentration increases in apoplast fluid after Xcc infection, which is caused by the enhanced activity of plant sugar transporters translocating sugar and cell-wall invertases releasing glucose from sucrose. XccR recruits glucose, but not fructose, sucrose, glucose 6-phosphate, and UDP-glucose, to activate pip expression. Deletion of the bacterial glucose transporter gene sglT impaired pathogen virulence and pip expression. Structural prediction showed that the N-terminal domain of XccR forms an alternative pocket neighbouring the AHL-binding pocket for glucose docking. Substitution of three residues affecting structural stability abolished the ability of XccR to bind to the luxXc box in the pip promoter. Several other XccR homologues from plant-associated bacteria can also form stable complexes with glucose, indicating that glucose may function as a common signal molecule for pathogen–plant interactions. The conservation of a glucose/XccR/pip-like system in plant-associated bacteria suggests that some phytopathogens have evolved the ability to utilize host compounds as virulence signals, indicating that LuxRs mediate an interkingdom signalling circuit.  相似文献   
993.
Marine Biotechnology - Takifugu rubripes is important commercially fish species in China and it is under serious threat from white spot disease (cyptocaryoniasis), which leads to heavy economic...  相似文献   
994.
Observatories are designed to collect data for a range of uses. The Australian Acoustic Observatory (A2O) was established to collect environmental sound, including audible species calls, from 344 recorders at 86 sites around Australia. We examine the potential of the A2O to monitor near threatened, threatened, endangered and critically endangered species, based on their vocal behaviour, geographic distributions in relation to the sites of the A2O and on some knowledge of habitat use. Using IUCN and EPBC lists of threatened and endangered species, we extracted species that vocalized in the audible range, and using conservative estimates of their geographic ranges, determined whether there was a possibility of hearing them at these sites. We found that it may be possible to detect up to 171 threatened species at sites established for the A2O, and that individual sites have the potential to detect up to 40 threatened species. All 86 sites occurred in locations where threatened species could possibly be detected, and the list of detectable species included birds, amphibians, and mammals. We have incidentally detected one mammal and four bird species in the data during other work. Threatening processes to which potentially detectable species were exposed included all but two IUCN threat categories. We concluded that with applications of technology to search the audio data from the A2O, it could serve as an important tool for monitoring threatened species.  相似文献   
995.
Sheath blight (ShB) severely threatens rice cultivation and production; however, the molecular mechanism of rice defence against ShB remains unclear. Screening of transposon Ds insertion mutants identified that Calcineurin B-like protein-interacting protein kinase 31 (CIPK31) mutants were more susceptible to ShB, while CIPK31 overexpressors (OX) were less susceptible. Sequence analysis indicated two haplotypes of CIPK31: Hap_1, with significantly higher CIPK31 expression, was less sensitive to ShB than the Hap_2 lines. Further analyses showed that the NAF domain of CIPK31 interacted with the EF-hand motif of respiratory burst oxidase homologue (RBOHA) to inhibit RBOHA-induced H2O2 production, and RBOHA RNAi plants were more susceptible to ShB. These data suggested that the CIPK31-mediated increase in resistance is not associated with RBOHA. Interestingly, the study also found that CIPK31 interacted with catalase C (CatC); cipk31 mutants accumulated less H2O2 while CIPK31 OX accumulated more H2O2 compared to the wild-type control. Further analysis showed the interaction of the catalase domain of CatC with the NAF domain of CIPK31 by which CIPK31 inhibits CatC activity to accumulate more H2O2.  相似文献   
996.
997.
Zanthoxylum armatum and Zanthoxylum bungeanum, known as ‘Chinese pepper’, are distinguished by their extraordinary complex genomes, phenotypic innovation of adaptive evolution and species-special metabolites. Here, we report reference-grade genomes of Z. armatum and Z. bungeanum. Using high coverage sequence data and comprehensive assembly strategies, we derived 66 pseudochromosomes comprising 33 homologous phased groups of two subgenomes, including autotetraploid Z. armatum. The genomic rearrangements and two whole-genome duplications created large (~4.5 Gb) complex genomes with a high ratio of repetitive sequences (>82%) and high chromosome number (2n = 4x = 132). Further analysis of the high-quality genomes shed lights on the genomic basis of involutional reproduction, allomones biosynthesis and adaptive evolution in Chinese pepper, revealing a high consistent relationship between genomic evolution, environmental factors and phenotypic innovation. Our study provides genomic resources and new insights for investigating diversification and phenotypic innovation in Chinese pepper, with broader implications for the protection of plants under severe environmental changes.  相似文献   
998.
Developing a new rice variety requires tremendous efforts and years of input. To improve the defect traits of the excellent varieties becomes more cost and time efficient than breeding a completely new variety. Kongyu 131 is a high-performing japonica variety with early maturity, high yield, wide adaptability and cold resistance, but the poor-lodging resistance hinders the industrial production of Kongyu 131 in the Northeastern China. In this study, we attempted to improve the lodging resistance of Kongyu 131 from perspectives of both gene and trait. On the one hand, by QTL analysis and fine mapping we discovered the candidate gene loci. The following CRISPR/Cas9 and transgenic complementation study confirmed that Sd1 dominated the lodging resistance and favourable allele was mined for precise introduction and improvement. On the other hand, the Sd1 allelic variant was identified in Kongyu 131 by sequence alignment, then introduced another excellent allelic variation by backcrossing. Then, the two new resulting Kongyu 131 went through the field evaluation under different environments, planting densities and nitrogen fertilizer conditions. The results showed that the plant height of upgraded Kongyu 131 was 17%–26% lower than Kongyu 131 without penalty in yield. This study demonstrated a precise and targeted way to update the rice genome and upgrade the elite rice varieties by improving only a few gene defects from the perspective of breeding.  相似文献   
999.
Grain size and filling are two key determinants of grain thousand-kernel weight (TKW) and crop yield, therefore they have undergone strong selection since cereal was domesticated. Genetic dissection of the two traits will improve yield potential in crops. A quantitative trait locus significantly associated with wheat grain TKW was detected on chromosome 7AS flanked by a simple sequence repeat marker of Wmc17 in Chinese wheat 262 mini-core collection by genome-wide association study. Combined with the bulked segregant RNA-sequencing (BSR-seq) analysis of an F2 genetic segregation population with extremely different TKW traits, a candidate trehalose-6-phosphate phosphatase gene located at 135.0 Mb (CS V1.0), designated as TaTPP-7A, was identified. This gene was specifically expressed in developing grains and strongly influenced grain filling and size. Overexpression (OE) of TaTPP-7A in wheat enhanced grain TKW and wheat yield greatly. Detailed analysis revealed that OE of TaTPP-7A significantly increased the expression levels of starch synthesis- and senescence-related genes involved in abscisic acid (ABA) and ethylene pathways. Moreover, most of the sucrose metabolism and starch regulation-related genes were potentially regulated by SnRK1. In addition, TaTPP-7A is a crucial domestication- and breeding-targeted gene and it feedback regulates sucrose lysis, flux, and utilization in the grain endosperm mainly through the T6P-SnRK1 pathway and sugar–ABA interaction. Thus, we confirmed the T6P signalling pathway as the central regulatory system for sucrose allocation and source–sink interactions in wheat grains and propose that the trehalose pathway components have great potential to increase yields in cereal crops.  相似文献   
1000.
Flowering time is one of important agronomic traits determining the crop yield and affected by high temperature. When facing high ambient temperature, plants often initiate early flowering as an adaptive strategy to escape the stress and ensure successful reproduction. However, here we find opposing ways in the short-day crop soybean to respond to different levels of high temperatures, in which flowering accelerates when temperature changes from 25 to 30 °C, but delays when temperature reaches 35 °C under short day. phyA-E1, possibly photoperiodic pathway, is crucial for 35 °C-mediated late flowering, however, does not contribute to promoting flowering at 30 °C. 30 °C-induced up-regulation of FT2a and FT5a leads to early flowering, independent of E1. Therefore, distinct responsive mechanisms are adopted by soybean when facing different levels of high temperatures for successful flowering and reproduction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号