首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54335篇
  免费   4822篇
  国内免费   3760篇
  2024年   104篇
  2023年   548篇
  2022年   1188篇
  2021年   2098篇
  2020年   1530篇
  2019年   1893篇
  2018年   1927篇
  2017年   1384篇
  2016年   2068篇
  2015年   3334篇
  2014年   3776篇
  2013年   4100篇
  2012年   4939篇
  2011年   4671篇
  2010年   2783篇
  2009年   2547篇
  2008年   3042篇
  2007年   2759篇
  2006年   2507篇
  2005年   2085篇
  2004年   1986篇
  2003年   1637篇
  2002年   1414篇
  2001年   1071篇
  2000年   937篇
  1999年   836篇
  1998年   510篇
  1997年   460篇
  1996年   441篇
  1995年   363篇
  1994年   369篇
  1993年   243篇
  1992年   404篇
  1991年   364篇
  1990年   326篇
  1989年   288篇
  1988年   234篇
  1987年   201篇
  1986年   173篇
  1985年   177篇
  1984年   174篇
  1983年   115篇
  1982年   99篇
  1981年   63篇
  1980年   61篇
  1979年   76篇
  1978年   71篇
  1976年   68篇
  1975年   64篇
  1974年   75篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
981.
Zhong  Yujie  Jin  Chengni  Han  Jiahui  Zhu  Jiachang  Liu  Qi  Sun  Dianjun  Xia  Xiaodong  Peng  Xiaoli 《Cell biology and toxicology》2021,37(5):795-809
Cell Biology and Toxicology - 3-Chloro-1, 2-propanediol (3-MCPD) is a food-borne toxic substance well-known for more than 40 years that is mainly associated with nephrotoxicity. A better...  相似文献   
982.
983.
Li  Fupeng  Wu  Baoduo  Yan  Lin  Qin  Xiaowei  Lai  Jianxiong 《Journal of plant research》2021,134(6):1323-1334
Journal of Plant Research - The Theobroma cacao presents a wide diversity in pod color among different cultivars. Although flavonoid biosynthesis has been studied in many plants, molecular...  相似文献   
984.
985.
Emerging data show a rise in colorectal cancer (CRC) incidence in young men and women that is often chemoresistant. One potential risk factor is an alteration in the microbiome. Here, we investigated the role of TGF-β signaling on the intestinal microbiome and the efficacy of chemotherapy for CRC induced by azoxymethane and dextran sodium sulfate in mice. We used two genotypes of TGF-β-signaling-deficient mice (Smad4+/? and Smad4+/?Sptbn1+/?), which developed CRC with similar phenotypes and had similar alterations in the intestinal microbiome. Using these mice, we evaluated the intestinal microbiome and determined the effect of dysfunctional TGF-β signaling on the response to the chemotherapeutic agent 5-Fluoro-uracil (5FU) after induction of CRC. Using shotgun metagenomic sequencing, we determined gut microbiota composition in mice with CRC and found reduced amounts of beneficial species of Bacteroides and Parabacteroides in the mutants compared to the wild-type (WT) mice. Furthermore, the mutant mice with CRC were resistant to 5FU. Whereas the abundances of E. boltae, B.dorei, Lachnoclostridium sp., and Mordavella sp. were significantly reduced in mice with CRC, these species only recovered to basal amounts after 5FU treatment in WT mice, suggesting that the alterations in the intestinal microbiome resulting from compromised TGF-β signaling impaired the response to 5FU. These findings could have implications for inhibiting the TGF-β pathway in the treatment of CRC or other cancers.  相似文献   
986.
The tea plant (Camellia sinensis) is a thermophilic cash crop and contains a highly duplicated and repeat-rich genome. It is still unclear how DNA methylation regulates the evolution of duplicated genes and chilling stress in tea plants. We therefore generated a single-base-resolution DNA methylation map of tea plants under chilling stress. We found that, compared with other plants, the tea plant genome is highly methylated in all three sequence contexts, including CG, CHG and CHH (where H = A, T, or C), which is further proven to be correlated with its repeat content and genome size. We show that DNA methylation in the gene body negatively regulates the gene expression of tea plants, whereas non-CG methylation in the flanking region enables a positive regulation of gene expression. We demonstrate that transposable element-mediated methylation dynamics significantly drives the expression divergence of duplicated genes in tea plants. The DNA methylation and expression divergence of duplicated genes in the tea plant increases with evolutionary age and selective pressure. Moreover, we detect thousands of differentially methylated genes, some of which are functionally associated with chilling stress. We also experimentally reveal that DNA methyltransferase genes of tea plants are significantly downregulated, whereas demethylase genes are upregulated at the initial stage of chilling stress, which is in line with the significant loss of DNA methylation of three well-known cold-responsive genes at their promoter and gene body regions. Overall, our findings underscore the importance of DNA methylation regulation and offer new insights into duplicated gene evolution and chilling tolerance in tea plants.  相似文献   
987.
ObjectivesCutaneous wound healing is one of the major medical problems worldwide. Epigenetic modifiers have been identified as important players in skin development, homeostasis and wound repair. SET domain–containing 2 (SETD2) is the only known histone H3K36 tri‐methylase; however, its role in skin wound healing remains unclear.Materials and MethodsTo elucidate the biological role of SETD2 in wound healing, conditional gene targeting was used to generate epidermis‐specific Setd2‐deficient mice. Wound‐healing experiments were performed on the backs of mice, and injured skin tissues were collected and analysed by haematoxylin and eosin (H&E) and immunohistochemical staining. In vitro, CCK8 and scratch wound‐healing assays were performed on Setd2‐knockdown and Setd2‐overexpression human immortalized keratinocyte cell line (HaCaT). In addition, RNA‐seq and H3K36me3 ChIP‐seq analyses were performed to identify the dysregulated genes modulated by SETD2. Finally, the results were validated in functional rescue experiments using AKT and mTOR inhibitors (MK2206 and rapamycin).ResultsEpidermis‐specific Setd2‐deficient mice were successfully established, and SETD2 deficiency resulted in accelerated re‐epithelialization during cutaneous wound healing by promoting keratinocyte proliferation and migration. Furthermore, the loss of SETD2 enhanced the scratch closure and proliferation of keratinocytes in vitro. Mechanistically, the deletion of Setd2 resulted in the activation of AKT/mTOR signalling pathway, while the pharmacological inhibition of AKT and mTOR with MK2206 and rapamycin, respectively, delayed wound closure.ConclusionsOur results showed that SETD2 loss promoted cutaneous wound healing via the activation of AKT/mTOR signalling.  相似文献   
988.
Liu  Jin Yue  Sheng  Ze Wen  Hu  Yu Qi  Liu  Qi  Qiang  Sheng  Song  Xiao Ling  Liu  Biao 《Transgenic research》2021,30(1):105-119
Transgenic Research - The releasing of transgenic soybeans (Glycine max (L.) Merr.) into farming systems raises concerns that transgenes might escape from the soybeans via pollen into...  相似文献   
989.
Understanding animal foraging ecology requires large sample sizes spanning broad environmental and temporal gradients. For pollinators, this has been hampered by the laborious nature of morphologically identifying pollen. Identifying pollen from urban environments is particularly difficult due to the presence of diverse ornamental species associated with consumer horticulture. Metagenetic pollen analysis represents a potential solution to this issue. Building upon prior laboratory and bioinformatic methods, we applied quantitative multilocus metabarcoding to characterize the foraging ecology of honeybee colonies situated in urban, suburban, mixed suburban–agricultural and rural agricultural sites in central Ohio, USA. In cross‐validating a subset of our metabarcoding results using microscopic palynology, we find strong concordance between the molecular and microscopic methods. Our results suggest that forage from the agricultural site exhibited decreased taxonomic diversity and temporal turnover relative to the urban and suburban sites, though the generalization of this observation will require replication across additional sites and cities. Our work demonstrates the power of honeybees as environmental samplers of floral community composition at large spatial scales, aiding in the distinction of taxa characteristically associated with urban or agricultural land use from those distributed ubiquitously across the sampled landscapes. Observed patterns of high forage diversity and compositional turnover in our more urban sites are likely reflective of the fine‐grain heterogeneity and high beta diversity of urban floral landscapes at the scale of honeybee foraging. This provides guidance for future studies investigating how relationships between urbanization and measures of pollinator health are mediated by variation in floral resource dynamics across landscapes.  相似文献   
990.
The liquid–liquid phase separation (LLPS) of Tau has been postulated to play a role in modulating the aggregation property of Tau, a process known to be critically associated with the pathology of a broad range of neurodegenerative diseases including Alzheimer''s Disease. Tau can undergo LLPS by homotypic interaction through self‐coacervation (SC) or by heterotypic association through complex‐coacervation (CC) between Tau and binding partners such as RNA. What is unclear is in what way the formation mechanisms for self and complex coacervation of Tau are similar or different, and the addition of a binding partner to Tau alters the properties of LLPS and Tau. A combination of in vitro experimental and computational study reveals that the primary driving force for both Tau CC and SC is electrostatic interactions between Tau‐RNA or Tau‐Tau macromolecules. The liquid condensates formed by the complex coacervation of Tau and RNA have distinctly higher micro‐viscosity and greater thermal stability than that formed by the SC of Tau. Our study shows that subtle changes in solution conditions, including molecular crowding and the presence of binding partners, can lead to the formation of different types of Tau condensates with distinct micro‐viscosity that can coexist as persistent and immiscible entities in solution. We speculate that the formation, rheological properties and stability of Tau droplets can be readily tuned by cellular factors, and that liquid condensation of Tau can alter the conformational equilibrium of Tau.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号