首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   127204篇
  免费   22965篇
  国内免费   6946篇
  2024年   155篇
  2023年   1085篇
  2022年   2134篇
  2021年   4849篇
  2020年   4872篇
  2019年   6961篇
  2018年   7017篇
  2017年   6366篇
  2016年   7499篇
  2015年   9589篇
  2014年   10253篇
  2013年   11525篇
  2012年   10716篇
  2011年   9796篇
  2010年   7889篇
  2009年   6150篇
  2008年   6180篇
  2007年   5192篇
  2006年   4587篇
  2005年   3956篇
  2004年   3469篇
  2003年   3045篇
  2002年   2723篇
  2001年   2423篇
  2000年   2306篇
  1999年   2078篇
  1998年   1132篇
  1997年   1067篇
  1996年   1077篇
  1995年   949篇
  1994年   932篇
  1993年   695篇
  1992年   1116篇
  1991年   933篇
  1990年   830篇
  1989年   747篇
  1988年   598篇
  1987年   507篇
  1986年   475篇
  1985年   443篇
  1984年   353篇
  1983年   293篇
  1982年   197篇
  1981年   170篇
  1979年   216篇
  1978年   152篇
  1977年   148篇
  1976年   144篇
  1975年   167篇
  1974年   185篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
31.
Sucrose non-fermenting-1-related protein kinase-1 (SnRK1) plays an important role in metabolic regulation in plant. To understand the molecular mechanism of amino acids and carbohydrate metabolism in Malus hupehensis Rehd. var. pinyiensis Jiang (Pingyi Tiancha, PYTC), a full-length cDNA clone encoding homologue of SnRK1 was isolated from PYTC by Rapid Amplification of cDNA Ends (RACE). The clone, designated as MhSnRK1, contains 2063 nucleotides with an open reading frame of 1548 nucleotides. The deduced 515 amino acids showed high identities with other plant SnRK1 genes. Quantitative real-time PCR analysis revealed this gene was expressed in roots, stems and leaves. Exposing seedlings to nitrate caused and initial decrease in expression of the MhSnRK1 gene in roots, leaves and stems in short term. Ectopic expression of MhSnRK1 in tomato mainly resulted in higher starch content in leaf and red-ripening fruit than wild-type plants. This result supports the hypothesis that overexpression of SnRK1 causes the accumulation of starch in plant cells. All the results suggest that MhSnRK1 may play important roles in carbohydrate and amino acid metabolisms.  相似文献   
32.
We used self‐reported data from United Methodist clergy to assess the prevalence of obesity and having ever been told certain chronic disease diagnoses. Of all actively serving United Methodist clergy in North Carolina (NC) 95% (n = 1726) completed self‐report height and weight items and diagnosis questions from the Behavioral Risk Factor Surveillance Survey (BRFSS). We calculated BMI categories and diagnosis prevalence rates for the clergy and compared them to the NC population using BRFSS data. The obesity rate among clergy aged 35–64 years was 39.7%, 10.3% (95% CI = 8.5%, 12.1%) higher than their NC counterparts. Clergy also reported significantly higher rates of having ever been given diagnoses of diabetes, arthritis, high blood pressure, angina, and asthma compared to their NC peers. Health interventions that address obesity and chronic disease among clergy are urgently needed.  相似文献   
33.
Recent studies have revealed an unexpected synergism between two seemingly unrelated protein families: CCN matricellular proteins and the tumor necrosis factor (TNF) family of cytokines. CCN proteins are dynamically expressed at sites of injury repair and inflammation, where TNF cytokines are also expressed. Although TNFα is an apoptotic inducer in some cancer cells, it activates NFκB to promote survival and proliferation in normal cells, and its cytotoxicity requires inhibition of de novo protein synthesis or NFκB signaling. The presence of CCN1, CCN2, or CCN3 overrides this requirement and unmasks the apoptotic potential of TNFα, thus converting TNFα from a proliferation-promoting protein into an apoptotic inducer. These CCN proteins also enhance the cytotoxicity of other TNF cytokines, including LTα, FasL, and TRAIL. Mechanistically, CCNs function through integrin α6β1 and the heparan sulfate proteoglycan (HSPG) syndecan-4 to induce reactive oxygen species (ROS) accumulation, which is essential for apoptotic synergism. Mutant CCN1 proteins defective for binding α6β1-HSPGs are unable to induce ROS or apoptotic synergism with TNF cytokines. Further, knockin mice that express an α6β1-HSPG-binding defective CCN1 are blunted in TNFα- and Fas-mediated apoptosis, indicating that CCN1 is a physiologic regulator of these processes. These findings implicate CCN proteins as contextual regulators of the inflammatory response by dictating or enhancing the cytotoxicity of TNFα and related cytokines.  相似文献   
34.
35.
We present a time‐calibrated phylogeny of the charismatic green lacewings (Neuroptera: Chrysopidae). Previous phylogenetic studies on the family using DNA sequences have suffered from sparse taxon sampling and/or limited amounts of data. Here we combine all available previously published DNA sequence data and add to it new DNA sequences generated for this study. We analysed these data in a supermatrix using Bayesian and maximum likelihood methods and provide a phylogenetic hypothesis for the family that recovers strong support for the monophyly of all subfamilies and resolves relationships among a large proportion of chrysopine genera. Chrysopinae tribes Leucochrysini and Belonopterygini were recovered as monophyletic sister clades, while the species‐rich tribe Chrysopini was rendered paraphyletic by Ankylopterygini. Relationships among the subfamilies were resolved, although with relatively low statistical support, and the topology varied based on the method of analysis. Greatest support was found for Apochrysinae as sister to Nothochrysinae and Chrysopinae, which is in contrast to traditional concepts that place Nothochrysinae as sister to the rest of the family. Divergence estimates suggest that the stem groups to the various subfamilies diverged during the Triassic‐Jurassic, and that stem groups of the chrysopine tribes diverged during the Cretaceous.  相似文献   
36.
A key intermediate in translocation is an ‘unlocked state’ of the pre‐translocation ribosome in which the P‐site tRNA adopts the P/E hybrid state, the L1 stalk domain closes and ribosomal subunits adopt a ratcheted configuration. Here, through two‐ and three‐colour smFRET imaging from multiple structural perspectives, EF‐G is shown to accelerate structural and kinetic pathways in the ribosome, leading to this transition. The EF‐G‐bound ribosome remains highly dynamic in nature, wherein, the unlocked state is transiently and reversibly formed. The P/E hybrid state is energetically favoured, but exchange with the classical P/P configuration persists; the L1 stalk adopts a fast dynamic mode characterized by rapid cycles of closure and opening. These data support a model in which P/E hybrid state formation, L1 stalk closure and subunit ratcheting are loosely coupled, independent processes that must converge to achieve the unlocked state. The highly dynamic nature of these motions, and their sensitivity to conformational and compositional changes in the ribosome, suggests that regulating the formation of this intermediate may present an effective avenue for translational control.  相似文献   
37.
38.
39.
40.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号