首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   13篇
  2022年   2篇
  2021年   4篇
  2018年   1篇
  2016年   3篇
  2015年   3篇
  2014年   3篇
  2013年   6篇
  2012年   7篇
  2011年   8篇
  2010年   7篇
  2009年   2篇
  2008年   7篇
  2007年   12篇
  2006年   9篇
  2005年   3篇
  2004年   9篇
  2003年   6篇
  2002年   3篇
  2001年   6篇
  2000年   8篇
  1999年   6篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
排序方式: 共有122条查询结果,搜索用时 15 毫秒
81.
We report on the characterization of RNF-121, an evolutionarily conserved E3 ligase RING finger protein that is expressed in the endoplasmic reticulum (ER) of various cells and tissues in Caenorhabditis elegans. Inactivation of RNF-121 induced an elevation in BiP expression and increased the sensitivity of worms to ER stress. Genetic analysis placed RNF-121 downstream of the unfolded protein response (UPR) regulator protein kinase-like endoplasmic reticulum kinase (PERK). We identify PAT-3::GFP, the β subunit of the heterodimeric integrin receptors, as an RNF-121 substrate; whereas induction of RNF-121 expression reduced the level of PAT-3::GFP in the gonad distal tip cells, inhibition of RNF-121 led to the accumulation of stably bound PAT-3::GFP inclusions. Correspondingly, overexpression of RNF-121 during early stages of gonad development led to aberrations in germline development and gonad migration that overlap with those observed after PAT-3 inactivation. The formation of these gonad abnormalities required functional ER-associated degradation (ERAD) machinery. Our findings identify RNF-121 as an ER-anchored ubiquitin ligase that plays a specific role in the ERAD pathway by linking it to the regulation of the cell adhesion integrin receptors.  相似文献   
82.

Background

Recent work by our laboratory and others has implicated NADPH oxidase as having an important role in reactive oxygen species (ROS) generation and neuronal damage following cerebral ischemia, although the mechanisms controlling NADPH oxidase in the brain remain poorly understood. The purpose of the current study was to examine the regulatory and functional role of the Rho GTPase, Rac1 in NADPH oxidase activation, ROS generation and neuronal cell death/cognitive dysfunction following global cerebral ischemia in the male rat.

Methodology/Principal Findings

Our studies revealed that NADPH oxidase activity and superoxide (O2 ) production in the hippocampal CA1 region increased rapidly after cerebral ischemia to reach a peak at 3 h post-reperfusion, followed by a fall in levels by 24 h post-reperfusion. Administration of a Rac GTPase inhibitor (NSC23766) 15 min before cerebral ischemia significantly attenuated NADPH oxidase activation and O2 production at 3 h after stroke as compared to vehicle-treated controls. NSC23766 also attenuated “in situ” O2 production in the hippocampus after ischemia/reperfusion, as determined by fluorescent oxidized hydroethidine staining. Oxidative stress damage in the hippocampal CA1 after ischemia/reperfusion was also significantly attenuated by NSC23766 treatment, as evidenced by a marked attenuation of immunostaining for the oxidative stress damage markers, 4-HNE, 8-OHdG and H2AX at 24 h in the hippocampal CA1 region following cerebral ischemia. In addition, Morris Water maze testing revealed that Rac GTPase inhibition after ischemic injury significantly improved hippocampal-dependent memory and cognitive spatial abilities at 7–9 d post reperfusion as compared to vehicle-treated animals.

Conclusions/Significance

The results of the study suggest that Rac1 GTPase has a critical role in mediating ischemia/reperfusion injury-induced NADPH oxidase activation, ROS generation and oxidative stress in the hippocampal CA1 region of the rat, and thus contributes significantly to neuronal degeneration and cognitive dysfunction following cerebral ischemia.  相似文献   
83.
Clearance of misfolded proteins from the ER is central for maintenance of cellular homeostasis. This process requires coordinated recognition, ER-cytosol translocation, and finally ubiquitination-dependent proteasomal degradation. Here, we identify an ER resident seven-transmembrane protein (JAMP) that links ER chaperones, channel proteins, ubiquitin ligases, and 26S proteasome subunits, thereby optimizing degradation of misfolded proteins. Elevated JAMP expression promotes localization of proteasomes at the ER, with a concomitant effect on degradation of specific ER-resident misfolded proteins, whereas inhibiting JAMP promotes the opposite response. Correspondingly, a jamp-1 deleted Caenorhabditis elegans strain exhibits hypersensitivity to ER stress and increased UPR. Using biochemical and genetic approaches, we identify JAMP as important component for coordinated clearance of misfolded proteins from the ER.  相似文献   
84.
Recent molecular characterizations of Cryptosporidium parasites make it possible to differentiate the human-pathogenic Cryptosporidium parasites from those that do not infect humans and to track the source of Cryptosporidium oocyst contamination in the environment. In this study, we used a small-subunit rRNA-based PCR-restriction fragment length polymorphism (RFLP) technique to detect and characterize Cryptosporidium oocysts in 55 samples of raw surface water collected from several areas in the United States and 49 samples of raw wastewater collected from Milwaukee, Wis. Cryptosporidium parasites were detected in 25 surface water samples and 12 raw wastewater samples. C. parvum human and bovine genotypes were the dominant Cryptosporidium parasites in the surface water samples from sites where there was potential contamination by humans and cattle, whereas C. andersoni was the most common parasite in wastewater. There may be geographic differences in the distribution of Cryptosporidium genotypes in surface water. The PCR-RFLP technique can be a useful alternative method for detection and differentiation of Cryptosporidium parasites in water.  相似文献   
85.
The Cryptosporidium "human" genotype was identified in a paraffin-embedded tissue section from a dugong (Dugong dugon) by 2 independent laboratories. DNA sequencing and polymerase chain reaction/restriction fragment length polymorphism analysis of the 18S ribosomal RNA gene and the acetyl CoA synthethase gene clearly identified the genotype as that of the Cryptosporidium variant that infects humans. This is the first report of the human Cryptosporidium genotype in a nonprimate host.  相似文献   
86.
Proapoptotic BID is an ATM effector in the DNA-damage response   总被引:5,自引:0,他引:5  
The "BH3-only" proapoptotic BCL-2 family members are sentinels of intracellular damage. Here, we demonstrated that the BH3-only BID protein partially localizes to the nucleus in healthy cells, is important for apoptosis induced by DNA damage, and is phosphorylated following induction of double-strand breaks in DNA. We also found that BID phosphorylation is mediated by the ATM kinase and occurs in mouse BID on two ATM consensus sites. Interestingly, BID-/- cells failed to accumulate in the S phase of the cell cycle following treatment with the topoisomerase II poison etoposide; reintroducing wild-type BID restored accumulation. In contrast, introducing a nonphosphorylatable BID mutant did not restore accumulation in the S phase and resulted in an increase in cellular sensitivity to etoposide-induced apoptosis. These results implicate BID as an ATM effector and raise the possibility that proapoptotic BID may also play a prosurvival role important for S phase arrest.  相似文献   
87.
Steps toward mapping the human vasculature by phage display   总被引:26,自引:0,他引:26  
The molecular diversity of receptors in human blood vessels remains largely unexplored. We developed a selection method in which peptides that home to specific vascular beds are identified after administration of a peptide library. Here we report the first in vivo screening of a peptide library in a patient. We surveyed 47,160 motifs that localized to different organs. This large-scale screening indicates that the tissue distribution of circulating peptides is nonrandom. High-throughput analysis of the motifs revealed similarities to ligands for differentially expressed cell-surface proteins, and a candidate ligand-receptor pair was validated. These data represent a step toward the construction of a molecular map of human vasculature and may have broad implications for the development of targeted therapies.  相似文献   
88.
Addition of gonadotropin releasing hormone (GnRH) to pituitary cells prelabeled with [32P]Pi or with myo-[2-3H]inositol, resulted in a rapid decrease in the level of [32P]phosphatidylinositol 4,5-bisphosphate (approximately 10 s), and in [32P]phosphatidylinositol 4-phosphate (approximately 1 min), followed by increased labeling of [32P]phosphatidylinositol and [32P]phosphatidic acid (1 min). GnRH stimulated the appearance of [3H]myo-inositol 1,4,5-trisphosphate (10 s), [3H]myo-inositol 1,4-bisphosphate (15 s), and [3H]myo-inositol 1-phosphate (1 min) in the presence of Li+ (10 mM). Li+ alone stimulated the accumulation of [3H]myo-inositol 1-phosphate and [3H]myo-inositol 1,4-bisphosphate but not [3H]myo-inositol 1,4,5-trisphosphate, but had no effect on luteinizing hormone release. The effect of GnRH on inositol phosphates (Ins-P) production was dose-related (ED50 = 1-5 nM), and was blocked by a potent antagonist [D-pGlu,pClPhe,D-Trp]GnRH. Elevation of cytosolic free Ca2+ levels ([Ca2+]i), by ionomycin and A23187 from intracellular or extracellular Ca2+ pools, respectively, had no significant effect on [3H]Ins-P production. GnRH-induced [3H]Ins-P production was not dependent on extracellular Ca2+ and was noticed also after extracellular or intracellular Ca2+ mobilization by A23187 or ionomycin, respectively. The effect of GnRH on [3H]Ins-P accumulation was not affected by prior treatment of the cells with the tumor promoter phorbol ester 12-O-tetradecanoylphorbol-13-acetate or with islet-activating protein pertussis toxin. These results indicate that GnRH stimulates a rapid phosphodiester hydrolysis of polyphosphoinositides. The stimulatory effect is not mediated via an islet-activating protein-substrate, is not dependent on elevation of [Ca2+]i, neither is it negatively regulated by 12-O-tetradecanoylphorbol-13-acetate which activates Ca2+/phospholipid-dependent protein C kinase. The results are consistent with the hypothesis that GnRH-induced phosphoinositide turnover is responsible for Ca2+ mobilization followed by gonadotropin release.  相似文献   
89.

Background

A comprehensive technique for earthquake-related casualty estimation remains an unmet challenge. This study aims to integrate risk factors related to characteristics of the exposed population and to the built environment in order to improve communities’ preparedness and response capabilities and to mitigate future consequences.

Methods

An innovative model was formulated based on a widely used loss estimation model (HAZUS) by integrating four human-related risk factors (age, gender, physical disability and socioeconomic status) that were identified through a systematic review and meta-analysis of epidemiological data. The common effect measures of these factors were calculated and entered to the existing model’s algorithm using logistic regression equations. Sensitivity analysis was performed by conducting a casualty estimation simulation in a high-vulnerability risk area in Israel.

Results

the integrated model outcomes indicated an increase in the total number of casualties compared with the prediction of the traditional model; with regard to specific injury levels an increase was demonstrated in the number of expected fatalities and in the severely and moderately injured, and a decrease was noted in the lightly injured. Urban areas with higher populations at risk rates were found more vulnerable in this regard.

Conclusion

The proposed model offers a novel approach that allows quantification of the combined impact of human-related and structural factors on the results of earthquake casualty modelling. Investing efforts in reducing human vulnerability and increasing resilience prior to an occurrence of an earthquake could lead to a possible decrease in the expected number of casualties.  相似文献   
90.
Mitochondrial fission and fusion are the main components mediating the dynamic change of mitochondrial morphology observed in living cells. While many protein factors directly participating in mitochondrial dynamics have been identified, upstream signals that regulate mitochondrial morphology are not well understood. In this study, we tested the role of intracellular Ca(2+) in regulating mitochondrial morphology. We found that treating cells with the ER Ca(2+)-ATPase inhibitor thapsigargin (TG) induced two phases of mitochondrial fragmentation. The initial fragmentation of mitochondria occurs rapidly within minutes dependent on an increase in intracellular Ca(2+) levels, and Ca(2+) influx into mitochondria is necessary for inducing mitochondrial fragmentation. The initial mitochondrial fragmentation is a transient event, as tubular mitochondrial morphology was restored as the Ca(2+) level decreased. We were able to block the TG-induced mitochondrial fragmentation by inhibiting mitochondrial fission proteins DLP1/Drp1 or hFis1, suggesting that increased mitochondrial Ca(2+) acts upstream to activate the cellular mitochondrial fission machinery. We also found that prolonged incubation with TG induced the second phase of mitochondrial fragmentation, which was non-reversible and led to cell death as reported previously. These results suggest that Ca(2+) is involved in controlling mitochondrial morphology via intra-mitochondrial Ca(2+) signaling as well as the apoptotic process.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号