首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16610篇
  免费   1464篇
  国内免费   1487篇
  2024年   36篇
  2023年   239篇
  2022年   458篇
  2021年   819篇
  2020年   669篇
  2019年   755篇
  2018年   763篇
  2017年   537篇
  2016年   717篇
  2015年   1097篇
  2014年   1321篇
  2013年   1326篇
  2012年   1540篇
  2011年   1393篇
  2010年   930篇
  2009年   767篇
  2008年   825篇
  2007年   738篇
  2006年   726篇
  2005年   582篇
  2004年   505篇
  2003年   541篇
  2002年   425篇
  2001年   251篇
  2000年   220篇
  1999年   222篇
  1998年   162篇
  1997年   117篇
  1996年   125篇
  1995年   127篇
  1994年   102篇
  1993年   68篇
  1992年   86篇
  1991年   71篇
  1990年   71篇
  1989年   51篇
  1988年   35篇
  1987年   28篇
  1986年   35篇
  1985年   27篇
  1984年   13篇
  1983年   8篇
  1982年   9篇
  1981年   5篇
  1980年   3篇
  1979年   4篇
  1976年   2篇
  1962年   2篇
  1950年   1篇
  1932年   1篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
191.
192.
Understanding how biodiversity and interaction networks change across environmental gradients is a major challenge in ecology. We integrated metacommunity and metanetwork perspectives to test species’ functional roles in bird–plant frugivory interactions in a fragmented forest landscape in Southwest China, with consequences for seed dispersal. Availability of fruit resources both on and under trees created vertical feeding stratification for frugivorous birds. Bird–plant interactions involving birds feeding only on‐the‐tree or both on and under‐the‐tree (shared) had a higher centrality and contributed more to metanetwork organisation than interactions involving birds feeding only under‐the‐tree. Moreover, bird–plant interactions associated with large‐seeded plants disproportionately contributed to metanetwork organisation and centrality. Consequently, on‐the‐tree and shared birds contributed more to metanetwork organisation whereas under‐the‐tree birds were more involved in local processes. We would expect that species’ roles in the metanetwork will translate into different conservation values for maintaining functioning of seed‐dispersal networks.  相似文献   
193.
Grain size and plant architecture are critical factors determining crop productivity. Here, we performed gene editing of the MIR396 gene family in rice and found that MIR396e and MIR396f are two important regulators of grain size and plant architecture. mir396ef mutations can increase grain yield by increasing grain size. In addition, mir396ef mutations resulted in an altered plant architecture, with lengthened leaves but shortened internodes, especially the uppermost internode. Our research suggests that mir396ef mutations promote leaf elongation by increasing the level of a gibberellin (GA) precursor, mevalonic acid, which subsequently promotes GA biosynthesis. However, internode elongation in mir396ef mutants appears to be suppressed via reduced CYP96B4 expression but not via the GA pathway. This research provides candidate gene‐editing targets to breed elite rice varieties.  相似文献   
194.
195.
Eukaryotic organisms activate conserved signalling networks to maintain genomic stability in response to DNA genotoxic stresses. However, the coordination of this response pathway in fungal pathogens remains largely unknown. In the present study, we investigated the mechanism by which the northern corn leaf blight pathogen Setosphaeria turcica controls maize infection and activates self-protection pathways in response to DNA genotoxic insults. Appressorium-mediated maize infection by S. turcica was blocked by the S-phase checkpoint. This repression was dependent on the checkpoint central kinase Ataxia Telangiectasia and Rad3 related (ATR), as inhibition of ATR activity or knockdown of the ATR gene recovered appressorium formation in the presence of genotoxic reagents. ATR promoted melanin biosynthesis in S. turcica as a defence response to stress. The melanin biosynthesis genes StPKS and StLac2 were induced by the ATR-mediated S-phase checkpoint. The responses to DNA genotoxic stress were conserved in a wide range of phytopathogenic fungi, including Cochliobolus heterostrophus, Cochliobolus carbonum, Alternaria solani, and Alternaria kikuchiana, which are known causal agents for plant diseases. We propose that in response to genotoxic stress, phytopathogenic fungi including S. turcica activate an ATR-dependent pathway to suppress appressorium-mediated infection and induce melanin-related self-protection in addition to conserved responses in eukaryotes.  相似文献   
196.
197.
Traditional approaches for sequencing insertion ends of bacterial artificial chromosome (BAC) libraries are laborious and expensive, which are currently some of the bottlenecks limiting a better understanding of the genomic features of auto‐ or allopolyploid species. Here, we developed a highly efficient and low‐cost BAC end analysis protocol, named BAC‐anchor, to identify paired‐end reads containing large internal gaps. Our approach mainly focused on the identification of high‐throughput sequencing reads carrying restriction enzyme cutting sites and searching for large internal gaps based on the mapping locations of both ends of the reads. We sequenced and analysed eight libraries containing over 3 200 000 BAC end clones derived from the BAC library of the tetraploid potato cultivar C88 digested with two restriction enzymes, Cla I and Mlu I. About 25% of the BAC end reads carrying cutting sites generated a 60–100 kb internal gap in the potato DM reference genome, which was consistent with the mapping results of Sanger sequencing of the BAC end clones and indicated large differences between autotetraploid and haploid genotypes in potato. A total of 5341 Cla I‐ and 165 Mlu I‐derived unique reads were distributed on different chromosomes of the DM reference genome and could be used to establish a physical map of target regions and assemble the C88 genome. The reads that matched different chromosomes are especially significant for the further assembly of complex polyploid genomes. Our study provides an example of analysing high‐coverage BAC end libraries with low sequencing cost and is a resource for further genome sequencing studies.  相似文献   
198.
Shi  Zhenjie  Zheng  Qianjiao  Sun  Xiaoyang  Xie  Fuchun  Zhao  Jian  Zhang  Gaoyun  Zhao  Wei  Guo  Zhixin  Ariunzul  Ariuka  Fahad  Shah  Adnan  Muhammad  Qin  Dong  Saud  Shah  Yajun  Chen 《BMC plant biology》2020,20(1):1-15
Kernel weight and morphology are important traits affecting cereal yields and quality. Dissecting the genetic basis of thousand kernel weight (TKW) and its related traits is an effective method to improve wheat yield. In this study, we performed quantitative trait loci (QTL) analysis using recombinant inbred lines derived from the cross ‘PuBing3228 × Gao8901’ (PG-RIL) to dissect the genetic basis of kernel traits. A total of 17 stable QTLs related to kernel traits were identified, notably, two stable QTLs QTkw.cas-1A.2 and QTkw.cas-4A explained the largest portion of the phenotypic variance for TKW and kernel length (KL), and the other two stable QTLs QTkw.cas-6A.1 and QTkw.cas-7D.2 contributed more effects on kernel width (KW). Conditional QTL analysis revealed that the stable QTLs for TKW were mainly affected by KW. The QTLs QTkw.cas-7D.2 and QKw.cas-7D.1 associated with TKW and KW were delimited to the physical interval of approximately 3.82 Mb harboring 47 candidate genes. Among them, the candidate gene TaFT-D1 had a 1 bp insertions/deletion (InDel) within the third exon, which might be the reason for diversity in TKW and KW between the two parents. A Kompetitive Allele-Specific PCR (KASP) marker of TaFT-D1 allele was developed and verified by PG-RIL and a natural population consisted of 141 cultivar/lines. It was found that the favorable TaFT-D1 (G)-allele has been positively selected during Chinese wheat breeding. Thus, these results can be used for further positional cloning and marker-assisted selection in wheat breeding programs. Seventeen stable QTLs related to kernel traits were identified. The stable QTLs for thousand kernel weight were mainly affected by kernel width. TaFT-D1 could be the candidate gene for QTLs QTkw.cas-7D.2 and QKw.cas-7D.1.  相似文献   
199.
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号