首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8812篇
  免费   787篇
  国内免费   731篇
  2024年   20篇
  2023年   133篇
  2022年   277篇
  2021年   505篇
  2020年   338篇
  2019年   392篇
  2018年   383篇
  2017年   263篇
  2016年   417篇
  2015年   580篇
  2014年   736篇
  2013年   657篇
  2012年   794篇
  2011年   690篇
  2010年   465篇
  2009年   375篇
  2008年   456篇
  2007年   433篇
  2006年   329篇
  2005年   278篇
  2004年   220篇
  2003年   214篇
  2002年   164篇
  2001年   147篇
  2000年   138篇
  1999年   164篇
  1998年   112篇
  1997年   83篇
  1996年   77篇
  1995年   67篇
  1994年   65篇
  1993年   42篇
  1992年   57篇
  1991年   47篇
  1990年   33篇
  1989年   38篇
  1988年   29篇
  1987年   33篇
  1986年   14篇
  1985年   22篇
  1984年   12篇
  1983年   7篇
  1982年   6篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   3篇
  1969年   1篇
  1965年   1篇
  1932年   1篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
181.
Light regulates ascorbic acid (AsA) synthesis, which increases in the light, presumably reflecting a need for antioxidants to detoxify reactive molecules produced during photosynthesis. Here, we examine this regulation in Arabidopsis thaliana and find that alterations in the protein levels of the AsA biosynthetic enzyme GDP-Man pyrophosphorylase (VTC1) are associated with changes in AsA contents in light and darkness. To find regulatory factors involved in AsA synthesis, we identified VTC1-interacting proteins by yeast two-hybrid screening of a cDNA library from etiolated seedlings. This screen identified the photomorphogenic factor COP9 signalosome subunit 5B (CSN5B), which interacted with the N terminus of VTC1 in yeast and plants. Gel filtration profiling showed that VTC1-CSN5B also associated with the COP9 signalosome complex, and this interaction promotes ubiquitination-dependent VTC1 degradation through the 26S proteasome pathway. Consistent with this, csn5b mutants showed very high AsA levels in both light and darkness. Also, a double mutant of csn5b with the partial loss-of-function mutant vtc1-1 contained AsA levels between those of vtc1-1 and csn5b, showing that CSN5B modulates AsA synthesis by affecting VTC1. In addition, the csn5b mutant showed higher tolerance to salt, indicating that CSN5B regulation of AsA synthesis affects the response to salt stress. Together, our data reveal a regulatory role of CSN5B in light-dark regulation of AsA synthesis.  相似文献   
182.
183.
184.
185.
The distribution of circulating lipoprotein particles affects the risk for cardiovascular disease (CVD) in humans. Lipoproteins are historically defined by their density, with low-density lipoproteins positively and high-density lipoproteins (HDLs) negatively associated with CVD risk in large populations. However, these broad definitions tend to obscure the remarkable heterogeneity within each class. Evidence indicates that each class is composed of physically (size, density, charge) and compositionally (protein and lipid) distinct subclasses exhibiting unique functionalities and differing effects on disease. HDLs in particular contain upward of 85 proteins of widely varying function that are differentially distributed across a broad range of particle diameters. We hypothesized that the plasma lipoproteins, particularly HDL, represent a continuum of phospholipid platforms that facilitate specific protein–protein interactions. To test this idea, we separated normal human plasma using three techniques that exploit different lipoprotein physicochemical properties (gel filtration chromatography, ionic exchange chromatography, and preparative isoelectric focusing). We then tracked the co-separation of 76 lipid-associated proteins via mass spectrometry and applied a summed correlation analysis to identify protein pairs that may co-reside on individual lipoproteins. The analysis produced 2701 pairing scores, with the top hits representing previously known protein–protein interactions as well as numerous unknown pairings. A network analysis revealed clusters of proteins with related functions, particularly lipid transport and complement regulation. The specific co-separation of protein pairs or clusters suggests the existence of stable lipoprotein subspecies that may carry out distinct functions. Further characterization of the composition and function of these subspecies may point to better targeted therapeutics aimed at CVD or other diseases.Lipoproteins are circulating emulsions of protein and lipid that play important roles, both positive and negative, in cardiovascular disease (CVD).1 Historically defined by their density as separated by ultracentrifugation, the major lipoprotein classes include the neutral lipid ester-rich very low-density and low-density lipoproteins (VLDLs and LDLs, respectively), which function to transport triglyceride and cholesterol from the liver to the peripheral tissues. Significant epidemiological evidence, in vitro studies, animal experiments, and human clinical trials have shown that high-LDL cholesterol is a bona fide causative factor in CVD (1). In contrast, protein- and phospholipid-rich high-density lipoproteins (HDLs) are thought to mediate the reverse transport of cholesterol from the periphery to the liver for catabolism and to perform anti-oxidative and anti-inflammatory functions (reviewed in Refs. 2 and 3). A host of human epidemiology and animal studies indicate that HDLs are atheroprotective (4). However, recent clinical trials of therapeutics that generically raise HDL, at least as measured by its cholesterol levels, have failed to confer the expected CVD protections (57).Although these traditional density-centric definitions have been used for nearly 40 years, accumulating evidence indicates that they are not particularly reflective of lipoprotein compositional and functional complexity. With respect to most physical traits (size, charge, lipid content, protein content, etc.), one can demonstrate significant heterogeneity within each density class. This suggests that particle subspecies exist with unique functions and effects on disease. For example, LDL can be resolved into large, buoyant and small, dense forms (8), with subjects carrying more cholesterol in the small, dense LDL exhibiting a greater CVD risk (9). HDL is particularly noted for heterogeneity, as it can be separated into numerous subfractions by density (10), diameter (11), charge (12), and major apolipoprotein content (13). Most strikingly, recent applications of soft-ionization mass spectrometry (MS) have identified upward of 85 HDL proteins with functions that go well beyond the structural apolipoproteins, lipid transport proteins, and lipid-modifying enzymes known from previous biochemical studies (14, 15). Many of these proteins imply functions as diverse as complement regulation, acute phase response, protease inhibition, and innate immunity (16). Individual HDL subspecies can apparently draw from this palette of proteins to produce distinct particles of distinct function. One well-defined HDL subfraction, termed trypanosome lytic factor, contains apolipoprotein apoA-I, haptoglobin-related protein, and apoL-I. Working together, these proteins enter the trypanosome brucei brucei and kill it via lysosomal disruption (17). There are numerous other instances of on-particle protein cooperation in HDL related to CVD (reviewed in Ref. 15). Furthermore, two-dimensional electrophoresis studies by Asztalos and colleagues (18), as well as our own work (11, 19), strongly support the concept that certain apolipoproteins segregate among different HDL particles. These observations present the intriguing possibility that the phospholipids of HDLs act as an organizing platform that facilitates the assembly of specific protein complexes (20). Such subspecies could have important functional implications in the context of CVD protection, inflammation, or even innate immune function. Furthermore, this subspeciation may explain why therapeutics that raise HDL cholesterol levels across the board have not yet shown promise with regard to CVD.To address this hypothesis, we began to think of lipoproteins as a continuum of phospholipid platforms that support the assembly of specific protein complexes analogous to those in cells that perform coordinated biological functions (i.e. ribosomes, centrosomes, etc.). Two common methods for characterizing protein complexes are tandem affinity purification (21) and immunoprecipitation. Both rely on the specific pull-down of a target protein (by either an introduced affinity tag or an antibody) followed by the identification of co-precipitated proteins via MS. Unfortunately, tandem affinity purification strategies are impractical in humans, and we have found that immunoprecipitation experiments with human plasma lipoproteins result in a high false-positive rate due to the low abundance of most of these proteins, particularly those in HDLs. Therefore, we took an alternative approach called co-separation analysis, a method based on the principle that stable protein complexes can be identified by tracking their co-migration as they undergo biochemical separation by multiple orthogonal approaches (22). Native proteins are analyzed in an unbiased manner without affinity tags or antibodies, and purification to homogeneity is not necessary for the identification of putative protein complexes.Most current studies of the lipoprotein proteome utilize samples isolated via density ultracentrifugation because contaminating lipid-unassociated lipoproteins, which can be highly abundant and obscure the identification of targeted lipid-associated proteins, are thus removed prior to the analysis. In previous work, we characterized the use of a calcium silica hydrate (CSH) resin that allowed the specific isolation of phospholipid-associated proteins and their subsequent MS identification without ultracentrifugation (11). This advance enabled the use of a variety of non-density-based separation methods for the study of plasma lipoproteins. Here, we take advantage of this to analyze the proteome of human plasma lipoproteins separated via three separation techniques that exploit different physicochemical properties: (i) gel filtration chromatography (size), (ii) anion exchange chromatography (charge interaction), and (iii) isoelectric focusing. By tracking the co-migration of specific proteins across these separations (Fig. 1), we identified a host of putative protein pairings, including the previously known trypanosome lytic factor HDL fraction, for further biochemical verification and characterization.Open in a separate windowFig. 1.Overview of the multi-dimensional separation co-migration analysis used in this study (see “Experimental Procedures” for details).  相似文献   
186.
187.
The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An 18F-labeled DPAZn2 complex (4-18F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), 18F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of 18F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2′-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[18F]-fluorobenzoate (18F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of 18F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of 18F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of 18F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that 18F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of 18F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.  相似文献   
188.
Rheumatoid arthritis (RA) is the most common degenerative arthritic cartilage and represents a disease where the prospect of stem cell therapy offers considerable hope. Currently, bone marrow (BM) represents the major source of mesenchymal stem cells (MSCs) for cell therapy. In the pathology of RA, the pro-inflammatory cytokines, such as interleukin 6 (IL-6) play a pivotal role. To investigate the direct role of IL-6 in the chondrogenic differentiation of murine MSCs (mMSCs), we isolate MSCs from the murine bone marrow, and induce MSCs chondrogenesis with different concentrations of IL-6 in vitro. Through detecting the histological and histochemical qualities of the aggregates, we demonstrate that IL-6 inhibited the differentiation of MSCs into chondrocytes in the dose-dependence manner. These findings suggest that possible strategies for improving the clinical outcome of cartilage repair procedures.  相似文献   
189.
Abstract

Background: Despite the in vitro and in vivo evidence, studies are limited in evaluating whether chemokines are potential inflammatory mediators in response to air pollution exposure in humans.

Methods: We conducted a panel study coinciding with the Beijing Olympics, when temporary air pollution controls were implemented. We measured a suite of serum chemokines among healthy adults before, during and after the Olympics, respectively. Linear mixed-effect models were used to evaluate changes in chemokine levels over the three time periods.

Results: In response to the 50% drop in air pollution levels during the games, levels of RANTES, MCP-2, and TARC decreased by 25.8%, 20.9% and 35.3%, respectively (p?<?0.001) from pre-Olympics, and then increased by 45.8%, 34.9% and 61.5%, respectively (p?<?0.001) after the games when air pollution levels went up again. Similar patterns were observed in subgroup analyses by sex, age, smoking and body mass index. GRO-α and IL-8 decreased significantly during the games (22.5% and 30.4%), and increased non-significantly after the games. Eotaxin-1 only increased significantly from during- to post-games.

Conclusions: The strongest associations with air pollution levels were observed among RANTES, TARC and MCP-2. Those chemokines may play important roles in the air pollution-induced inflammatory pathway.  相似文献   
190.
The neutral endo-β-glucanase gene cel5A from Humicola insolens was cloned and connected with the cellobiohydrolase 1 promoter from Trichoderma reesei to construct a recombinant plasmid pCB-hEG with the hygromycin B resistance marker. The plasmid was introduced into conidia of T. reesei using the Agrobacterium tumefaciens mediated transformation method. Eight transformants were obtained on screening plates with sodium carboxymethyl cellulose as the sole carbon source. Stable integration of the cel5A gene into the chromosomal DNA of T. reesei was confirmed by PCR. An obvious protein band (approximately 52 kDa) was detected by SDS-PAGE from fermentation broth, which showed that the cel5A gene in recombinant T. reesei successfully fulfilled efficient expression and extracellular secretion. After 96 h shaking-flask fermentation, the endo-β-glucanase activity at pH 6.5 from recombinant T. reesei reached 3,068 U/ml, which was 11 times higher than that of the host strain. In a 2 m3 fermenter, the endo-β-glucanase activity could be further increased to 8,012 U/ml after 96 h fermentation. The results showed a good prospect for application of neutral endo-β-glucanase in the textile industry.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号