首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   952篇
  免费   74篇
  国内免费   175篇
  2024年   7篇
  2023年   31篇
  2022年   23篇
  2021年   61篇
  2020年   40篇
  2019年   44篇
  2018年   62篇
  2017年   30篇
  2016年   33篇
  2015年   72篇
  2014年   84篇
  2013年   65篇
  2012年   83篇
  2011年   84篇
  2010年   44篇
  2009年   42篇
  2008年   45篇
  2007年   36篇
  2006年   40篇
  2005年   28篇
  2004年   22篇
  2003年   27篇
  2002年   30篇
  2001年   8篇
  2000年   9篇
  1999年   18篇
  1998年   24篇
  1997年   7篇
  1996年   10篇
  1995年   19篇
  1994年   9篇
  1993年   11篇
  1992年   8篇
  1991年   8篇
  1990年   11篇
  1989年   7篇
  1988年   7篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1969年   1篇
  1932年   1篇
排序方式: 共有1201条查询结果,搜索用时 15 毫秒
101.
Xi X  Jiang L  Sun W  Shen Z 《Chirality》2007,19(7):521-527
Polymerization of N-phenylmaleimide derivatives bearing a chiral oxazoline substituent at ortho-position on the phenyl group (namely, N-[o-(4,5-dihydro-1,3-oxazol-2-yl)phenyl]maleimides, OPMI) was carried out with diethylzinc (Et2Zn) as an initiator. The resulting polymers exhibited a quite high specific rotation and a unique split-type circular dichroism. Furthermore, an induced Cotton effect was observed in the pi-pi* transition region of the chromophores upon complexation of these polymers with copper(II) salt in tetrahydrofuran solution, indicating the formation of chiral supramolecular aggregates. The induced supramolecular chirality was found to be dependent on the absolute configuration of monomer units, that is, the polymers with (R)-configurational oxazolinyl chromophores tended to form chiral aggregates with levorotatory handedness, while polymers obtained from the (S)-monomer offered dextrogyrate one upon the addition of Cu(II) salt.  相似文献   
102.
【目的】评估具核梭杆菌对人结直肠癌细胞HCT116和人正常结肠上皮细胞HCoEpiC的增殖、黏附、凋亡、迁移、侵袭和上皮间质转化的影响。【方法】本研究用不同感染复数(MOI)Fusobacterium nucleatum ATCC 23726感染人结直肠癌细胞HCT116和人正常结肠上皮细胞HCoEpiC,建立感染模型;用3-(4,5-二甲基噻唑-2)-2,5-二苯基四氮唑溴盐[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide,MTT]、平板克隆、细胞划痕及侵袭(transwell)实验检测两组细胞的增殖、迁移和侵袭的变化;用流式细胞仪检测两组细胞凋亡情况;通过Western blotting检测两组细胞上皮标记物上皮细胞钙黏蛋白(E-cadherin)、Catenin δ-1蛋白、间充质标记物N-钙粘蛋白(N-cadherin)和波形蛋白(vimentin)表达水平的变化。【结果】F.nucleatum可促进HCT116细胞增殖,诱导HCT116细胞的迁移和侵袭,但不能引起细胞凋亡;可抑制HCoEpiC细胞的增殖、迁移和侵袭,并加速其凋亡;对HCT116和HCoEpiC细胞表现出很强的粘附能力,致细胞分散和拉长,细胞间粘附减少;使HCT116和HCoEpiC细胞上皮标记物E-cadherin与Catenin δ-1的表达量减少,间充质标记物N-cadherin与vimentin的表达量上升,E-cadherin由细胞膜向细胞质转移。【结论】F.nucleatum可诱导结直肠癌细胞和人正常结肠上皮细胞发生上皮间质转化,但抑制人正常结肠细胞的增殖、迁移和侵袭,表现出与结直肠癌细胞相反的作用。  相似文献   
103.
Liu  Jia  Liu  Jianmin  Yang  Bin  Gao  Cong  Song  Wei  Hu  Guipeng  Liu  Liming  Wu  Jing 《Biotechnology letters》2022,44(5-6):635-642
Biotechnology Letters - This study aimed to develop an efficient enzymatic strategy for the industrial production of phenylpyruvate (PPA) from l-phenylpyruvic acid (l-Phe). l-amino acid deaminase...  相似文献   
104.
Osmotic stress activates the biosynthesis of the phytohormone abscisic acid (ABA) through a pathway that is rate limited by the carotenoid cleavage enzyme 9-cis-epoxycarotenoid dioxygenase (NCED). To understand the signal transduction mechanism underlying the activation of ABA biosynthesis, we performed a forward genetic screen to isolate mutants defective in osmotic stress regulation of the NCED3 gene. Here, we identified the Arabidopsis (Arabidopsis thaliana) Vacuolar Sorting Receptor1 (VSR1) as a unique regulator of ABA biosynthesis. The vsr1 mutant not only shows increased sensitivity to osmotic stress, but also is defective in the feedback regulation of ABA biosynthesis by ABA. Further analysis revealed that vacuolar trafficking mediated by VSR1 is required for osmotic stress-responsive ABA biosynthesis and osmotic stress tolerance. Moreover, under osmotic stress conditions, the membrane potential, calcium flux, and vacuolar pH changes in the vsr1 mutant differ from those in the wild type. Given that manipulation of the intracellular pH is sufficient to modulate the expression of ABA biosynthesis genes, including NCED3, and ABA accumulation, we propose that intracellular pH changes caused by osmotic stress may play a signaling role in regulating ABA biosynthesis and that this regulation is dependent on functional VSR1.Plant vacuoles are vital organelles for maintaining cell volume and cell turgor, regulating ion homeostasis and pH, disposing toxic materials, and storing and degrading unwanted proteins (Marty, 1999). To perform these diverse functions, vacuoles require an array of different and complex proteins. These proteins are synthesized at the endoplasmic reticulum (ER) and are transported to the vacuole through the vacuolar trafficking pathway. Perturbation of the vacuolar trafficking machinery affects many cellular processes, including tropisms, responses to pathogens, cytokinesis, hormone transport, and signal transduction (Surpin and Raikhel, 2004). The vacuolar trafficking system is comprised of several compartments: the ER, the Golgi apparatus, the trans-Golgi network (TGN), the prevacuolar compartment (PVC), and the vacuole. Vacuolar proteins synthesized at the ER are transported to the cis-Golgi via coat protein complex II (COPII) vesicles and are then transported to the TGN through the Golgi apparatus. In the TGN, proteins are sorted for delivery to their respective locations according to their targeting signal. Vacuolar proteins carrying a vacuolar sorting signal are thought to be recognized by vacuolar sorting receptors (VSRs), which are mainly located in the PVC, although sorting of vacuolar proteins may also occur at the ER and VSRs can be recycled from the TGN to the ER (Castelli and Vitale, 2005; Niemes et al., 2010). Multiple studies suggest that plant VSRs serve as sorting receptors both for lytic vacuole proteins (daSilva et al., 2005; Foresti et al., 2006; Kim et al., 2010) and for storage vacuole proteins (Shimada et al., 2003; Fuji et al., 2007; Zouhar et al., 2010).Osmotic stress is commonly associated with many environmental stresses, including drought, cold, and high soil salinity, that have a severe impact on the productivity of agricultural plants worldwide. Therefore, understanding how plants perceive and respond to osmotic stress is critical for improving plant resistance to abiotic stresses (Zhu, 2002; Fujita et al., 2013). It has long been recognized that osmotic stress can activate several signaling pathways that lead to changes in gene expression and metabolism. One important regulator of these signaling pathways is the phytohormone abscisic acid (ABA), which accumulates in response to osmotic stress. ABA regulates many critical processes, such as seed dormancy, stomatal movement, and adaptation to environmental stress (Finkelstein and Gibson, 2002; Xiong and Zhu, 2003; Cutler et al., 2010). De novo synthesis of ABA is of primary importance for increasing ABA levels in response to abiotic stress. ABA is synthesized through the cleavage of a C40 carotenoid originating from the 2-C-methyl-d-erythritol-4-phosphate pathway, followed by a conversion from zeaxanthin to violaxanthin catalyzed by the zeaxanthin epoxidase ABA1 and then to neoxanthin catalyzed by the neoxanthin synthase ABA4. Subsequently, a 9-cis-epoxycarotenoid dioxygenase (NCED) cleaves the violaxanthin and neoxanthin to xanthoxin. Xanthoxin, in turn, is oxidized by a short-chain alcohol dehydrogenase (ABA2) to abscisic aldehyde, which is converted to ABA by abscisic acid aldehyde oxidase3 (AAO3) using a molybdenum cofactor activated by the molybdenum cofactor sulfurase (ABA3; Nambara and Marion-Poll, 2005). In this pathway, it is generally thought that the cleavage step catalyzed by NCED is the rate-limiting step (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). In Arabidopsis (Arabidopsis thaliana), five members of the NCED family (NCED2, NCED3, NCED5, NCED6, and NCED9) have been characterized (Tan et al., 2003). Of those, NCED3 has been suggested to play a crucial role in ABA biosynthesis, and its expression is induced by dehydration and osmotic stress (Iuchi et al., 2000, 2001; Qin and Zeevaart, 2002; Xiong and Zhu, 2003). Thus, understanding how the NCED3 gene is activated in response to osmotic stress is important for the elucidation of the mechanisms that govern plant acclimation to abiotic stress.We have used the firefly luciferase reporter gene driven by the stress-responsive NCED3 promoter to enable the genetic dissection of plant responses to osmotic stress (Wang et al., 2011). Here, we report the characterization of a unique regulator of ABA biosynthesis, 9-cis Epoxycarotenoid Dioxygenase Defective2 (CED2). The ced2 mutants are impaired in osmotic stress tolerance and are defective in the expression of genes required for ABA synthesis and consequently osmotic stress-induced ABA accumulation. The CED2 gene encodes VSR1, previously known to be involved in vacuolar trafficking but not known to be critical for osmotic stress induction of ABA biosynthesis and osmotic stress tolerance. Our study further suggests that intracellular pH changes might act as an early stress response signal triggering osmotic stress-activated ABA biosynthesis.  相似文献   
105.
We tested whether DNA-methylation profiles account for inter-individual variation in body mass index (BMI) and height and whether they predict these phenotypes over and above genetic factors. Genetic predictors were derived from published summary results from the largest genome-wide association studies on BMI (n ∼ 350,000) and height (n ∼ 250,000) to date. We derived methylation predictors by estimating probe-trait effects in discovery samples and tested them in external samples. Methylation profiles associated with BMI in older individuals from the Lothian Birth Cohorts (LBCs, n = 1,366) explained 4.9% of the variation in BMI in Dutch adults from the LifeLines DEEP study (n = 750) but did not account for any BMI variation in adolescents from the Brisbane Systems Genetic Study (BSGS, n = 403). Methylation profiles based on the Dutch sample explained 4.9% and 3.6% of the variation in BMI in the LBCs and BSGS, respectively. Methylation profiles predicted BMI independently of genetic profiles in an additive manner: 7%, 8%, and 14% of variance of BMI in the LBCs were explained by the methylation predictor, the genetic predictor, and a model containing both, respectively. The corresponding percentages for LifeLines DEEP were 5%, 9%, and 13%, respectively, suggesting that the methylation profiles represent environmental effects. The differential effects of the BMI methylation profiles by age support previous observations of age modulation of genetic contributions. In contrast, methylation profiles accounted for almost no variation in height, consistent with a mainly genetic contribution to inter-individual variation. The BMI results suggest that combining genetic and epigenetic information might have greater utility for complex-trait prediction.  相似文献   
106.
Epidermal fatty acid‐binding protein (E‐FABP/FABP5/DA11) binds and transport long‐chain fatty acids in the cytoplasm and may play a protecting role during neuronal injury. We examined whether E‐FABP protects nerve growth factor‐differentiated PC12 cells (NGFDPC12 cells) from lipotoxic injury observed after palmitic acid (C16:0; PAM) overload. NGFDPC12 cells cultures treated with PAM/bovine serum albumin at 0.3 mM/0.15 mM show PAM‐induced lipotoxicity (PAM‐LTx) and apoptosis. The apoptosis was preceded by a cellular accumulation of reactive oxygen species (ROS) and higher levels of E‐FABP. Antioxidants MCI‐186 and N‐acetyl cysteine prevented E‐FABP's induction in expression by PAM‐LTx, while tert‐butyl hydroperoxide increased ROS and E‐FABP expression. Non‐metabolized methyl ester of PAM, methyl palmitic acid (mPAM), failed to increase cellular ROS, E‐FABP gene expression, or trigger apoptosis. Treatment of NGFDPC12 cultures with siE‐FABP showed reduced E‐FABP levels correlating with higher accumulation of ROS and cell death after exposure to PAM. In contrast, increasing E‐FABP cellular levels by pre‐loading the cells with recombinant E‐FABP diminished the PAM‐induced ROS and cell death. Finally, agonists for PPARβ (GW0742) or PPARγ (GW1929) increased E‐FABP expression and enhanced the resistance of NGFDPC12 cells to PAM‐LTx. We conclude that E‐FABP protects NGFDPC12 cells from lipotoxic injury through mechanisms that involve reduction of ROS.

  相似文献   

107.
小球藻是一种食用历史久、营养丰富的微藻功能食品,其中蛋白核小球藻已于2012年被我国批准为新资源食品,并成为国内外正在大力发展与培育的微藻能源及微藻固碳这一战略性新兴产业的主要藻种之一。在积累油脂的同时,小球藻自身还能合成高附加值生物活性物质,其合理利用可平衡微藻能源的高成本。小球藻热水提取物(CE),即商业上宣称的"小球藻生长因子(CGF)",是小球藻有别于其他微藻的主要生物活性物质,在促进生长、调节免疫等方面具有良好功效,且市场售价高。但迄今,有关CE的认识尚不清晰,尚未见CE方面的系统评述。本文对近年来CE的活性研究状况进行了系统的文献调查与梳理,综述了CE在增强免疫、抑制肿瘤、改善代谢综合征、清除自由基、抵御紫外损伤、螯合重金属以及保肝护肠等多个方面的功效,并分析了CE活性研究中存在的问题及CE的发展前景。  相似文献   
108.
The codon modified neutral endo-β-1,4-glucanase gene celEn, originating from the anaerobic fungus Orpinomyces sp. strain PC-2, was inserted between the strong promoter Pcel7A and the terminator Tcel7A from Trichoderma reesei. The resulting expression cassette was ligated to the pCAMBIA1300 Agrobacterium binary vector to construct pCB-hE that also contains a hygromycin B resistance marker. pCB-hE was introduced into T. reesei ZU-02 through an Agrobacterium tumefaciens–mediated transformation procedure that has been modified with an improved transformation efficiency of 12,500 transformants per 107 conidia. Stable integration of the celEn gene into the chromosomal DNA of T. reesei ZU-02 was confirmed by PCR. After 48 h fermentation in shaking flasks, the endo-β-1,4-glucanase activities increased to 55–70 IU ml−1 in transgenic strains, which were about 6–7 times higher than that of the original ZU-02 strain (9.5 IU ml−1). When the avicel was added in fermentation medium, the endo-β-1,4-glucanase activity in the transgenic strains could be further increased to 193.6 IU ml−1 after 84 h fermentation. Transgenic T. reesei strains with high neutral endo-β-1,4-glucanase activity will be particularly suitable for certain applications in textile industry. The improved procedures for overproduction and secretion of heterologous proteins in transgenic T. reesei can also be used to generate similar recombinant proteins for research or industrial purposes.  相似文献   
109.
Wang F  Gu Z  Cui Z  Liu L 《Bioresource technology》2011,102(20):9374-9379
α-Amylase from Aspergillus oryzae was covalently immobilized onto polystyrene pellets with pentaethylenehexamine (PS-PEHA-Ald) and pentaethylene glycol (PS-PG-Ald) carrying a terminal aldehyde group. Optimum immobilization occured at pH 8.0 and 25 °C, and at pH 7.0 and 35 °C for PS-PEHA-Ald and PS-PG-Ald, respectively. PS-PEHA-Ald immobilized enzyme retained approximately 75% of the initial activity over 45 days of storage, 70% of the initial activity after nine runs of recycling and displayed the better resistance to detrimental metal ions. PS-PG-Ald immobilized enzyme retained approximately 50% of the initial activity in 8h at 70 °C. The catalytic efficiencies of PS-PEHA-Ald immobilized and PS-PG-Ald immobilized amylase were 1.42 and 1.29 times higher than that of native enzyme. The activation energy of the reaction mediated by the amylase was reduced by 58.1% and 57.3% when PS-PEHA-Ald and PS-PG-Ald used as support respectively.  相似文献   
110.
Wang B  Xia L 《Bioresource technology》2011,102(6):4568-4572
The cellobiase gene from Aspergillus niger was cloned and connected with the strong promoter Pcbh1 from Trichoderma reesei to construct a recombinant plasmid pHB9 with the hygromycin B resistance marker. The plasmid was transformed into conidia of T. reesei using the modified PEG-CaCl2 method. Main factors effecting the transformation were discussed and about 99-113 transformants/μg DNA could be obtained under optimal conditions. It was found that the molecular mass of the recombinant cellobiase was about 120 kDa by SDS-PAGE analysis. The activity of cellobiase could reach 5.3 IU/ml after 48 h fermentation, which was as high as 106 times compared with that of the host strain. Meanwhile, the filter paper activity of recombinant T. reesei was 1.44-fold of the host strain. Saccharification of corncob residue with the crude enzyme showed that the hydrolysis yield (84.2%) of recombinant T. reesei was 21% higher than that (69.5%) of the host strain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号