首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4375篇
  免费   295篇
  国内免费   325篇
  4995篇
  2024年   11篇
  2023年   66篇
  2022年   147篇
  2021年   249篇
  2020年   179篇
  2019年   175篇
  2018年   183篇
  2017年   155篇
  2016年   212篇
  2015年   278篇
  2014年   344篇
  2013年   368篇
  2012年   379篇
  2011年   346篇
  2010年   247篇
  2009年   214篇
  2008年   234篇
  2007年   184篇
  2006年   162篇
  2005年   140篇
  2004年   108篇
  2003年   88篇
  2002年   78篇
  2001年   56篇
  2000年   60篇
  1999年   64篇
  1998年   42篇
  1997年   23篇
  1996年   34篇
  1995年   31篇
  1994年   20篇
  1993年   17篇
  1992年   17篇
  1991年   14篇
  1990年   14篇
  1989年   11篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   8篇
  1984年   1篇
  1983年   2篇
  1981年   2篇
  1979年   4篇
排序方式: 共有4995条查询结果,搜索用时 15 毫秒
41.
The International Journal of Life Cycle Assessment - As an ambitious strategy of national interest in China and with an aim at achieving the ‘one-hour economic circle’ among Greater Bay...  相似文献   
42.
Duan  S. B.  Wei  S. S.  Wang  H. M.  Ding  S. H.  Chen  Y. Z.  Tian  J. J.  Wang  Y. J.  Chen  W.  Chen  J.  Meng  Q. L. 《Molecular Biology》2021,55(6):884-888
Molecular Biology - When expressing streptavidin recombinant polypeptide on magnetosomes (called bacterial magnetic nanoparticles, or BMPs), the presence of endogenous bacterial biotin might be...  相似文献   
43.
44.
虾类和果蝇同属节肢动物.果蝇的相关研究表明自噬与免疫关系密切,而虾类自噬机制研究鲜少.微管相关蛋白1轻链3 (microtubule-associated protein 1 light chain 3,Lc3)与自噬基因Atg8同源,其与自噬体的形成密切相关,是自噬活性的标志分子.本研究利用RACE技术克隆了罗氏沼虾的MrLc3a基因的全长cDNA,用RT-qPCR检测了该基因在罗氏沼虾主要组织中的表达量;并研究了正常和副溶血弧菌感染两种情况下MrLc3a基因和免疫基因Relish的表达变化情况,为其在病害防御方面的应用提供了前期数据.试验结果表明:MrLc3a基因全长653 bp,其中包括195 bp的5'-UTR、378 bp的ORF开放阅读框和80 bp的3'-UTR,共编码126个氨基酸;序列比对结果显示,其编码的氨基酸序列和南美白对虾Lc3a编码的氨基酸序列具有较高的同源性,并在系统发育树上聚为一支;RT-qPCR结果显示,MrLc3a基因在罗氏沼虾各个组织均有表达,其中在脑、鳃、胃中的表达量较高,在肝胰腺和性腺中的表达量较少;副溶血弧菌感染罗氏沼虾后显著影响了MrLc3a和Relish基因在罗氏沼虾肝胰腺组织中的转录情况,MrLc3a和Relish基因随时间变化都呈现出先上升后下降的趋势,表明MrLc3a基因通过参与细胞自噬过程而参与了免疫反应.  相似文献   
45.
Shear stress was reported to regulate the expression of AC007362, but its underlying mechanisms remain to be explored. In this study, to isolate endothelial cells of blood vessels, unruptured and ruptured intracranial aneurysm (IA) tissues were collected from IA patients. Subsequently, quantitative real-time PCR (qRT-PCR), Western blot and luciferase assay were performed to investigate the relationships between AC007362, miRNAs-493 and monocyte chemoattractant protein-1 (MCP-1) in human umbilical vein endothelial cells (HUVECs) exposed to shear stress. Reduced representation bisulphite sequencing (RRBS) was performed to assess the level of DNA methylation in AC007362 promoter. Accordingly, AC007362 and MCP-1 were significantly up-regulated while miR-493 was significantly down-regulated in HUVECs exposed to shear stress. AC007362 could suppress the miR-493 expression and elevate the MCP-1 expression, and miR-493 was shown to respectively target AC007362 and MCP-1. Moreover, shear stress in HUVECs led to the down-regulated DNA methyltransferase 1 (DNMT1), as well as the decreased DNA methylation level of AC007362 promoter. Similar results were also observed in ruptured IA tissues when compared with unruptured IA tissues. In conclusion, this study presented a deep insight into the operation of the regulatory network of AC007362, miR-493 and MCP-1 upon shear stress. Under shear stress, the expression of AC007362 was enhanced by the inhibited promoter DNA methylation, while the expression of MCP-1 was enhanced by sponging the expression of miR-493.  相似文献   
46.
47.
We sought to investigate the relationship between the changes of CpG island methylation status of LMNA gene and insulin resistance in polycystic ovary syndrome (PCOS) patients. The genome-wide methylation microarray screening was done in three PCOS cases of insulin resistance and one case of a normal woman. The PCOS insulin resistance-related genes were identified as indicated by the results of gene chip screening. Then, 24 cases of insulin-resistant PCOS patients and 24 cases of normal individuals were studied to identify the effects of the candidate genes using genome-wide study of DNA from the peripheral blood analyzed by MassARRAY®EpiTYPER? DNA methylation analysis technique. We found that the methylation status of CpG island in the promoter area of LMNA gene was changed. The 20 CG sites in CpG island of LMNA gene were examined using case control experiment among which 12 CpG sites differed significantly (P < 0.05) between two groups while the remaining eight CpG sites differed non-significantly. We, therefore, concluded that the changes in the hypermethylation status of CpG island of LMNA gene were related to the insulin resistance in PCOS patients, indicating that this gene may be involved in the regulation of PCOS-associated insulin resistance.  相似文献   
48.
The crustacean X-organ–sinus gland (XO–SG) complex controls molt-inhibiting hormone (MIH) production, although extra expression sites for MIH have been postulated. Therefore, to explore the expression of MIH and distinguish between the crustacean hyperglycemic hormone (CHH) superfamily, and MIH immunoreactive sites (ir) in the central nervous system (CNS), we cloned a CHH gene sequence for the crab Portunus pelagicus (Ppel-CHH), and compared it with crab CHH-type I and II peptides. Employing multiple sequence alignments and phylogenic analysis, the mature Ppel-CHH peptide exhibited residues common to both CHH-type I and II peptides, and a high degree of identity to the type-I group, but little homology between Ppel-CHH and Ppel-MIH (a type II peptide). This sequence identification then allowed for the use of MIH antisera to further confirm the identity and existence of a MIH-ir 9 kDa protein in all neural organs tested by Western blotting, and through immunohistochemistry, MIH-ir in the XO, optic nerve, neuronal cluster 17 of the supraesophageal ganglion, the ventral nerve cord, and cell cluster 22 of the thoracic ganglion. The presence of MIH protein within such a diversity of sites in the CNS, and external to the XO–SG, raises new questions concerning the established mode of MIH action.  相似文献   
49.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
50.
Virtualization is widely used in cloud computing environments to efficiently manage resources, but it also raises several challenges. One of them is the fairness issue of resource allocation among virtual machines. Traditional virtualized resource allocation approaches distribute physical resources equally without taking into account the actual workload of each virtual machine and thus often leads to wasting. In this paper, we propose a virtualized resource auction and allocation model (VRAA) based on incentive and penalty to correct this wasting problem. In our approach, we use Nash equilibrium of cooperative games to fairly allocate resources among multiple virtual machines to maximize revenue of the system. To illustrate the effectiveness of the proposed approach, we then apply the basic laws of auction gaming to investigate how CPU allocation and contention can affect applications’ performance (i.e., response time), and its effect on CPU utilization. We find that in our VRAA model, the fairness index is high, and the resource allocation is closely proportional to the actual workloads of the virtual machines, so the wasting of resources is reduced. Experiment results show that our model is general, and can be applied to other virtualized non-CPU resources.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号