首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6710篇
  免费   583篇
  国内免费   6篇
  7299篇
  2023年   19篇
  2022年   102篇
  2021年   165篇
  2020年   85篇
  2019年   95篇
  2018年   160篇
  2017年   125篇
  2016年   216篇
  2015年   361篇
  2014年   408篇
  2013年   466篇
  2012年   586篇
  2011年   527篇
  2010年   321篇
  2009年   250篇
  2008年   403篇
  2007年   388篇
  2006年   317篇
  2005年   313篇
  2004年   306篇
  2003年   211篇
  2002年   221篇
  2001年   209篇
  2000年   144篇
  1999年   113篇
  1998年   52篇
  1997年   35篇
  1996年   45篇
  1995年   34篇
  1994年   30篇
  1993年   23篇
  1992年   56篇
  1991年   36篇
  1990年   40篇
  1989年   34篇
  1988年   31篇
  1987年   37篇
  1986年   24篇
  1985年   24篇
  1984年   19篇
  1983年   17篇
  1982年   20篇
  1981年   22篇
  1980年   16篇
  1979年   21篇
  1978年   20篇
  1977年   22篇
  1976年   20篇
  1974年   17篇
  1969年   13篇
排序方式: 共有7299条查询结果,搜索用时 15 毫秒
991.
Pin1 binds mitotically phosphorylated Thr231–Pro232 and Thr212–Pro213 sites on tau, and a Pin1 deficiency in mice leads to tau hyperphosphorylation. The aim of this study was to determine if the dephosphorylation or inhibition of tau and GSK3β phosphorylation induces the Pin1 phosphorylation. To test this, human SK-N-MC cells were stably transfected with a fusion gene containing neuron-specific enolase (NSE)-controlled APPsw gene(NSE/APPsw), to induce Aβ-42. The stable transfectants were then transiently transfected with NSE/Splice, lacking human tau (NSE/Splice), or NSE/hTau, containing human tau, into the cells. The NSE/Splice- and NSE/hTau-cells were then treated with lithium. We concluded that (i) there was more C99-β APP accumulation than C83-βAPP in APPsw-tansfectant and thereby promoted Aβ-42 production in transfectants. (ii) the inhibition of tau and GSK3β phosphorylations correlated with increase in Pin1 activation in NSE/hTau- cells. Thus, these observations suggest that Pin1 might have an inhibitive role in phosphorylating tau and GSK3β for protecting against Alzheimer’s disease.  相似文献   
992.
Bacterial ribosomes stalled on defective mRNAs are rescued by tmRNA that functions as both tRNA and mRNA. The first ribosomal elongation cycle on tmRNA where tmRNA functions as tRNA is highly unusual: occupation of the ribosomal A site by tmRNA occurs without codon:anticodon pairing. Our analysis shows that in this case the role of a codon:anticodon duplex should be accomplished by a single unpaired triplet. In order that tmRNA could participate in the ribosomal elongation cycle, a triplet preceding the mRNA portion of tmRNA (the -1triplet) should be in the A-form and this form should be recognized by the ribosomal decoding center. A rule is derived that determines what triplets cannot be used as the -1triplet. The rule was tested with the -1triplets of all known 414 tmRNA species. All 23 observed -1triplets follow the formulated rule. The rule is also supported by the available data on base substitutions within the -1triplet.  相似文献   
993.
Rhodospirillum rubrum is a phototrophic purple nonsulfur bacterium known for its unique and well-studied nitrogen fixation and carbon monoxide oxidation systems and as a source of hydrogen and biodegradable plastic production. To better understand this organism and to facilitate assembly of its sequence, three whole-genome restriction endonuclease maps (XbaI, NheI, and HindIII) of R. rubrum strain ATCC 11170 were created by optical mapping. Optical mapping is a system for creating whole-genome ordered restriction endonuclease maps from randomly sheared genomic DNA molecules extracted from cells. During the sequence finishing process, all three optical maps confirmed a putative error in sequence assembly, while the HindIII map acted as a scaffold for high-resolution alignment with sequence contigs spanning the whole genome. In addition to highlighting optical mapping's role in the assembly and confirmation of genome sequence, this work underscores the unique niche in resolution occupied by the optical mapping system. With a resolution ranging from 6.5 kb (previously published) to 45 kb (reported here), optical mapping advances a "molecular cytogenetics" approach to solving problems in genomic analysis.  相似文献   
994.
Epithiospecifier protein (ESP) is a protein that catalyses formation of epithionitriles during glucosinolate hydrolysis. In vitro assays with a recombinant ESP showed that the formation of epithionitriles from alkenylglucosinolates is ESP and ferrous ion dependent. Nitrile formation in vitro however does not require ESP but only the presence of Fe(II) and myrosinase. Ectopic expression of ESP in Arabidopsis thaliana Col-5 under control of the strong viral CaMV 35S promoter altered the glucosinolate product profile from isothiocyanates towards the corresponding nitriles.  相似文献   
995.
Ji JW  Yang HL  Kim SJ 《Molecules and cells》2005,20(3):348-353
Using in silico approaches and RACE we cloned a full length trinucleotide (CAG) repeat-containing cDNA (cag-3). The cDNA is 2478 bp long and the deduced polypeptide consists of 140 amino acids of which 73 are glutamines. The genomic sequence spans approximately 79 kb on mouse chromosome 7 and the gene is composed of four exons. Standard and real-time PCR analyses of several mouse tissues showed that the gene is exclusively expressed in the brain and is not detected in embryonic stages. Within the brain, it is expressed throughout the forebrain region with predominant expression in the hypothalamus and olfactory bulb and very low levels in the mid- and hindbrain.  相似文献   
996.
997.
998.
999.
Li J  Dao M  Lim CT  Suresh S 《Biophysical journal》2005,88(5):3707-3719
We present a three-dimensional computational study of whole-cell equilibrium shape and deformation of human red blood cell (RBC) using spectrin-level energetics. Random network models consisting of degree-2, 3, ..., 9 junction complexes and spectrin links are used to populate spherical and biconcave surfaces and intermediate shapes, and coarse-grained molecular dynamics simulations are then performed with spectrin connectivities fixed. A sphere is first filled with cytosol and gradually deflated while preserving its total surface area, until cytosol volume consistent with the real RBC is reached. The equilibrium shape is determined through energy minimization by assuming that the spectrin tetramer links satisfy the worm-like chain free-energy model. Subsequently, direct stretching by optical tweezers of the initial equilibrium shape is simulated to extract the variation of axial and transverse diameters with the stretch force. At persistence length p = 7.5 nm for the spectrin tetramer molecule and corresponding in-plane shear modulus mu(0) approximately 8.3 microN/m, our models show reasonable agreement with recent experimental measurements on the large deformation of RBC with optical tweezers. We find that the choice of the reference state used for the in-plane elastic energy is critical for determining the equilibrium shape. If a position-independent material reference state such as a full sphere is used in defining the in-plane energy, then the bending modulus kappa needs to be at least a decade larger than the widely accepted value of 2 x 10(-19) J to stabilize the biconcave shape against the cup shape. We demonstrate through detailed computations that this paradox can be avoided by invoking the physical hypothesis that the spectrin network undergoes constant remodeling to always relax the in-plane shear elastic energy to zero at any macroscopic shape, at some slow characteristic timescale. We have devised and implemented a liquefied network structure evolution algorithm that relaxes shear stress everywhere in the network and generates cytoskeleton structures that mimic experimental observations.  相似文献   
1000.

Background  

A secreted peptide Pep27 initiates the cell death program in S. pneumoniae through signal transduction. This study was undertaken to evaluate the relation between the structure and cytotoxic activity of Pep27 and its analogues on cancer cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号