首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   639篇
  免费   54篇
  2021年   6篇
  2018年   6篇
  2016年   12篇
  2015年   12篇
  2014年   11篇
  2013年   19篇
  2012年   30篇
  2011年   22篇
  2010年   18篇
  2009年   14篇
  2008年   21篇
  2007年   19篇
  2006年   28篇
  2005年   27篇
  2004年   26篇
  2003年   27篇
  2002年   24篇
  2001年   20篇
  2000年   19篇
  1999年   17篇
  1998年   10篇
  1997年   8篇
  1996年   13篇
  1995年   11篇
  1994年   7篇
  1992年   10篇
  1991年   10篇
  1990年   8篇
  1989年   8篇
  1988年   10篇
  1987年   5篇
  1986年   7篇
  1985年   7篇
  1983年   8篇
  1982年   7篇
  1981年   13篇
  1980年   12篇
  1979年   7篇
  1977年   5篇
  1976年   5篇
  1975年   9篇
  1974年   12篇
  1973年   9篇
  1972年   5篇
  1971年   14篇
  1970年   8篇
  1969年   7篇
  1968年   9篇
  1967年   10篇
  1966年   8篇
排序方式: 共有693条查询结果,搜索用时 15 毫秒
41.
One-week treatment with the benzodiazepine (BZ) flurazepam (FZP), results in anticonvulsant tolerance, associated with reduced GABAA receptor (GABAR) subunit protein and miniature inhibitory post-synaptic current (mIPSC) amplitude in CA1 neurons of rat hippocampus. Because protein kinase A (PKA) has been shown to modulate GABAR function in CA1 pyramidal cells, the present study assessed whether GABAR dysfunction is associated with changes in PKA activity. Two days after 1-week FZP treatment, there were significant decreases in basal (- 30%) and total (- 25%) PKA activity, and a 40% reduction in PKA RIIbeta protein in the insoluble fraction of CA1 hippocampus. The soluble component of CA1 showed a significant increase in basal (100%) but not total PKA activity. Whole-cell recording in vitro showed a 50% reduction in mIPSC amplitude in CA1 pyramidal cells, with altered sensitivity to PKA modulators. Neurons from FZP-treated rats responded to 8-bromo-cAMP with a significant increase (31%) in mIPSC amplitude. Likewise, vasoactive intestinal polypeptide (VIP), an endogenous PKA activator, caused a significant 36% increase in mIPSC amplitude in FZP-treated cells. Neither agent had a significant effect on mIPSC amplitude in control cells. This study supports a role for PKA in GABAR dysfunction after chronic FZP treatment.  相似文献   
42.
Rare germline mutations of macrophage scavenger receptor 1 (MSR1) gene were reported to be associated with prostate cancer risk in families with hereditary prostate cancer (HPC) and in patients with non-HPC (Xu et al. 2002). To further evaluate the role of MSR1 in prostate cancer susceptibility, at Johns Hopkins Hospital, we studied five common variants of MSR1 in 301 patients with non-HPC who underwent prostate cancer treatment and in 250 control subjects who participated in prostate cancer-screening programs and had normal digital rectal examination and PSA levels (<4 ng/ml). Significantly different allele frequencies between case subjects and control subjects were observed for each of the five variants (P value range.01-.04). Haplotype analyses provided consistent findings, with a significant difference in the haplotype frequencies from a global score test (P=.01). Because the haplotype that is associated with the increased risk for prostate cancer did not harbor any of the known rare mutations, it appears that the observed association of common variants and prostate cancer risk are independent of the effect of the known rare mutations. These results consistently suggest that MSR1 may play an important role in prostate carcinogenesis.  相似文献   
43.
Analysis of the cytoskeleton in morphogenetically active plant cells allows us to propose a unified concept for the structural organization of eukaryotic cells. Their cytoarchitecture is determined by two principal structural complexes: nucleus-microtubule-based cell bodies ("bugs") and plasma-membrane-F-actin-based cell periphery complexes ("cages"). There are dynamic interactions between each of these entities in response to extracellular and intracellular signals. In the case of the cell body, these signals determine its polarization, rotation and migration. Interactions between cell body and cell periphery complexes determine cell growth polarity and morphogenesis throughout the eukaryotic kingdom.  相似文献   
44.
Bartonella henselae causes the vasculoproliferative disorders bacillary angiomatosis (BA) and bacillary peliosis (BP). The pathomechanisms of these tumorous proliferations are unknown. Our results suggest a novel bacterial two-step pathogenicity strategy, in which the pathogen triggers growth factor production for subsequent proliferation of its own host cells. In fact, B. henselae induces host cell production of the angiogenic factor vascular endothelial growth factor (VEGF), leading to proliferation of endothelial cells. The presence of B. henselae pili was associated with host cell VEGF production, as a Pil- mutant of B. henselae was unable to induce VEGF production. In turn, VEGF-stimulated endothelial cells promoted the growth of B. henselae. Immunohistochemistry for VEGF in specimens from patients with BA or BP revealed increased VEGF expression in vivo. These findings suggest a novel bacteria-dependent mechanism of tumour growth.  相似文献   
45.
Previous kinetic studies demonstrated that nucleotide-derived conformational changes regulate function in the COOH-terminal Src kinase. We have employed enhanced methods of hydrogen-deuterium exchange-mass spectrometry (DXMS) to probe conformational changes on CSK in the absence and presence of nucleotides and thereby provide a structural framework for understanding phosphorylation-driven conformational changes. High quality peptic fragments covering approximately 63% of the entire CSK polypeptide were isolated using DXMS. Time-dependent deuterium incorporation into these probes was monitored to identify short peptide segments that exchange differentially with solvent. Regions expected to lie in loops exchange rapidly, whereas other regions expected to lie in stable secondary structure exchange slowly with solvent implying that CSK adopts a modular structure. The ATP analog, AMPPNP, protects probes in the active site and distal regions in the large and small lobes of the kinase domain, the SH2 domain, and the linker connecting the SH2 and kinase domains. The product ADP protects similar regions of the protein but the extent of protection varies markedly in several crucial areas. These areas correspond to the activation loop and helix G in the kinase domain and several inter-domain regions. These results imply that delivery of the gamma phosphate group of ATP induces unique local and long-range conformational changes in CSK that may influence regulatory motions in the catalytic pathway.  相似文献   
46.
Abnormal fragmentation during cyanogen bromide polypeptide cleavage rarely occurs, although parallel side reactions are known to typically accompany normal cleavage. We have observed that cyanogen bromide cleavage of highly hydrophobic fusion proteins utilized for production of recombinant peptides results in almost complete abolishment of the expected reaction products when the reaction is carried out in 70% trifluoroacetic acid. On the basis of mass spectrometric analysis of the reaction products, we have identified a number of fragments whose origin can be attributed to incomplete fragmentation of the fusion protein, and to unspecific degradation affecting the carrier protein. Substituting the solvent in the reaction media with 70% formic acid or with a matrix composed of 6M guanidinium hydrochloride in 0.1M HCl, however, was found to alleviate polypeptide cleavage. We have attributed the poor yields of the CNBr cleavage carried out in 70% TFA to the increased hydrophobicity of our particular fusion proteins, and to the poor solubilizing ability of this reaction medium. We propose the utilization of chaotropic agents in the presence of diluted acids as the preferred cyanogen bromide cleavage medium of fusion proteins in order to maximize cleavage efficiency of hydrophobic sequences and to prevent deleterious degradation and structural modifications of the target peptides.  相似文献   
47.
48.
Structural insights into the interaction of smooth muscle myosin with actin have been provided by computer-based fitting of crystal structures into three-dimensional reconstructions obtained by electron cryomicroscopy, and by mapping of structural and dynamic changes in the actomyosin complex. The actomyosin structures determined in the presence and absence of MgADP differ significantly from each other, and from all crystallographic structures of unbound myosin. Coupled to a complex movement ( approximately 34 A) of the light chain binding domain upon MgADP release, we observed a approximately 9 degrees rotation of the myosin motor domain relative to the actin filament, and a closure of the cleft that divides the actin binding region of the myosin head. Cleft closure is achieved by a movement of the upper 50 kDa region, while parts of the lower 50 kDa region are stabilized through strong interactions with actin. This model supports a mechanism in which binding of MgATP at the active site opens the cleft and disrupts the interface, thereby releasing myosin from actin.  相似文献   
49.
Symplastic intercellular transport in plants is achieved by plasmodesmata (PD). These cytoplasmic channels are well known to interconnect plant cells to facilitate intercellular movement of water, nutrients, and signaling molecules including hormones. However, it is not known whether Al may affect this cell-to-cell transport process, which is a critical feature for roots as organs of nutrient/water uptake. We have microinjected the dye lucifer yellow carbohydrazide into peripheral root cells of an Al-sensitive wheat (Triticum aestivum cv Scout 66) either before or after Al treatment and followed the cell-to-cell dye-coupling through PD. Here we show that the Al-induced root growth inhibition is closely associated with the Al-induced blockage of cell-to-cell dye coupling. Immunofluorescence combined with immuno-electron microscopic techniques using monoclonal antibodies against 1-->3-beta-D-glucan (callose) revealed circumstantial evidence that Al-induced callose deposition at PD may responsible for this blockage of symplastic transport. Use of 2-deoxy-D-glucose, a callose synthesis inhibitor, allowed us to demonstrate that a reduction in callose particles correlated well with the improved dye-coupling and reduced root growth inhibition. While assessing the tissue specificity of this Al effect, comparable responses were obtained from the dye-coupling pattern in tobacco (Nicotiana tabacum) mesophyll cells. Analyses of the Al-induced expression of PD-associated proteins, such as calreticulin and unconventional myosin VIII, showed enhanced fluorescence and co-localizations with callose deposits. These results suggest that Al-signal mediated localized alterations to calcium homeostasis may drive callose formation and PD closure. Our data demonstrate that extracellular Al-induced callose deposition at PD could effectively block symplastic transport and communication in higher plants.  相似文献   
50.
The overlapping roles of the predominant Notch receptors in vascular smooth muscle cells, Notch2 and Notch3, have not been clearly defined in vivo. In this study, we use a smooth muscle‐specific deletion of Notch2 together with a global Notch3 deletion to produce mice with combinations of mutant and wild‐type Notch2/3 alleles in vascular smooth muscle cells. Mice with complete loss of Notch3 and smooth muscle‐expressed Notch2 display late embryonic lethality and subcutaneous hemorrhage. Mice without smooth muscle‐Notch2 and only one wild‐type copy of Notch3 die within one day of birth and present with vascular defects, most notably patent ductus arteriosus (DA) and aortic dilation. These defects were associated with decreased expression of contractile markers in both the DA and aorta. These results demonstrate that Notch2 and Notch3 have overlapping roles in promoting development of vascular smooth muscle cells, and together contribute to functional closure of the DA. genesis 53:738–748, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号