首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   529篇
  免费   45篇
  2021年   10篇
  2020年   6篇
  2018年   5篇
  2017年   8篇
  2016年   15篇
  2015年   16篇
  2014年   13篇
  2013年   26篇
  2012年   28篇
  2011年   24篇
  2010年   11篇
  2009年   13篇
  2008年   18篇
  2007年   19篇
  2006年   12篇
  2005年   22篇
  2004年   21篇
  2003年   17篇
  2002年   22篇
  2001年   12篇
  2000年   8篇
  1999年   8篇
  1998年   5篇
  1996年   5篇
  1995年   11篇
  1994年   7篇
  1992年   6篇
  1991年   6篇
  1990年   6篇
  1989年   5篇
  1988年   7篇
  1986年   4篇
  1985年   5篇
  1982年   6篇
  1981年   10篇
  1980年   12篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1976年   4篇
  1975年   7篇
  1974年   9篇
  1973年   8篇
  1972年   5篇
  1971年   13篇
  1970年   6篇
  1969年   7篇
  1968年   9篇
  1967年   7篇
  1966年   7篇
排序方式: 共有574条查询结果,搜索用时 359 毫秒
61.
The distribution of the toxic dinoflagellate Alexandrium tamarense Lebour has apparently expanded within the southern hemisphere during the last 2 decades. Toxic blooms of A. tamarense were recorded in Argentinean coastal waters since 1980; however, the first documented bloom in southern Brazil was in 1996. In this study, 13 strains of A. tamarense from southern Brazil were isolated and kept in culture. Phylogenetic analysis using RFLP and DNA sequences of the D1–D2 region of large subunit ribosomal DNA (rDNA) clearly indicates that Brazilian strains are most closely related to other South American strains. The strains from South America are placed firmly within a phylogenetic clade which contains strains from North America, northern Europe and northern Asia, previously called the North American clade. Possible dispersal hypotheses are discussed. The cultures were also analyzed for saxitoxin and its derivatives by high performance liquid chromatography (HPLC). The main saxitoxin groups found were the low toxicity N-sulfocarbamoyl group, C1, 2 (30–84%), followed by the high potency carbamate toxins, gonyautoxins 1, 4 (6.6–55%), gonyautoxins 2, 3 (0.3–29%), neosaxitoxin (1.4–24%) and saxitoxin (0–4.4%). The toxin composition is similar to that of other strains from South America, supporting a close relationship between A. tamarense from southern Brazil and other areas of South America. Toxicity values were variable (7.07–65.92 pg STX cell−1), with the higher range falling among the most toxic values recorded for cultures of A. tamarense, indicating the significant risk for shellfish contamination and human intoxication during blooms of this species along the southern Brazilian coast.  相似文献   
62.
The Pim-1 protein kinase plays an important role in regulating both cell growth and survival and enhancing transformation by multiple oncogenes. The ability of Pim-1 to regulate cell growth is mediated, in part, by the capacity of this protein kinase to control the levels of the p27, a protein that is a critical regulator of cyclin-dependent kinases that mediate cell cycle progression. To understand how Pim-1 is capable of regulating p27 protein levels, we focused our attention on the SCFSkp2 ubiquitin ligase complex that controls the rate of degradation of this protein. We found that expression of Pim-1 increases the level of Skp2 through direct binding and phosphorylation of multiple sites on this protein. Along with known Skp2 phosphorylation sites including Ser64 and Ser72, we have identified Thr417 as a unique Pim-1 phosphorylation target. Phosphorylation of Thr417 controls the stability of Skp2 and its ability to degrade p27. Additionally, we found that Pim-1 regulates the anaphase-promoting complex or cyclosome (APC/C complex) that mediates the ubiquitination of Skp2. Pim-1 phosphorylates Cdh1 and impairs binding of this protein to another APC/C complex member, CDC27. These modifications inhibit Skp2 from degradation. Marked increases in Skp2 caused by these mechanisms lower cellular p27 levels. Consistent with these observations, we show that Pim-1 is able to cooperate with Skp2 to signal S phase entry. Our data reveal a novel Pim-1 kinase-dependent signaling pathway that plays a crucial role in cell cycle regulation.  相似文献   
63.
Dendritic cells (DC) express the ATP-binding cassette (ABC) transporters P-glycoprotein (ABCB1) and multidrug resistance protein 1 (MRP1; ABCC1). Functionally, both these transporters have been described to be required for efficient DC and T cell migration. In this study, we report that MRP1 activity is also crucial for differentiation of DC. Inhibition of MRP1, but not P-glycoprotein, transporter activity with specific antagonists during in vitro DC differentiation interfered with early DC development. Impaired interstitial and Langerhans DC differentiation was characterized by 1) morphological changes, reflected by dropped side scatter levels in flow cytometric analysis and 2) phenotypic changes illustrated by maintained expression of the monocytic marker CD14, lower expression levels of CD40, CD86, HLA-DR, and a significant decrease in the amount of cells expressing CD1a, CD1c, and Langerin. Defective DC differentiation also resulted in their reduced ability to stimulate allogeneic T cells. We identified the endogenous CD1 ligands sulfatide and monosialoganglioside GM1 as MRP1 substrates, but exogenous addition of these substrates could not restore the defects caused by blocking MRP1 activity during DC differentiation. Although leukotriene C(4) was reported to restore migration of murine Mrp1-deficient DC, the effects of MRP1 inhibition on DC differentiation appeared to be independent of the leukotriene pathway. Though MRP1 transporter activity is important for DC differentiation, the relevant MRP1 substrate, which is required for DC differentiation, remains to be identified. Altogether, MRP1 seems to fulfill an important physiological role in DC development and DC functions.  相似文献   
64.
Anti-acyl-Coenzyme A (acyl-CoA) antibodies were used to detect fatty acyl-CoAs in cultured rat hippocampal neurons, in which important lipid metabolism and transport occur. Hippocampus was chosen because of his involvement in many cerebral functions and diseases. Immunofluorescence experiments showed an intense labelling within neurites and cell bodies. Labelling seems to be associated with vesicles and membrane domains. We have shown by immunoblot experiments that the labelling corresponded to acyl-CoAs which were in strong interaction with proteins, without being covalently bound to them. Immunoprecipitation experiments, followed by proteomic analysis, showed that anti-acyl-CoA antibodies were also able to immunoprecipitate multiprotein complexes, principally related to vesicle trafficking and/or to membrane rafts.  相似文献   
65.
66.
Vascular cell interactions mediated through cell surface receptors play a critical role in the assembly and maintenance of blood vessels. These signaling interactions transmit important information that alters cell function through changes in protein dynamics and gene expression. Here, we identify syndecan-2 (SDC2) as a gene whose expression is induced in smooth muscle cells upon physical contact with endothelial cells. Syndecan-2 is a heparan sulfate proteoglycan that is known to be important for developmental processes, including angiogenesis. Our results show that endothelial cells induce mRNA expression of syndecan-2 in smooth muscle cells by activating Notch receptor signaling. Both NOTCH2 and NOTCH3 contribute to the increased expression of syndecan-2 and are themselves sufficient to promote its expression independent of endothelial cells. Syndecan family members serve as coreceptors for signaling molecules, and interestingly, our data show that syndecan-2 regulates Notch signaling and physically interacts with NOTCH3. Notch activity is attenuated in smooth muscle cells made deficient in syndecan-2, and this specifically prevents expression of the differentiation marker smooth muscle α-actin. These results show a novel mechanism in which Notch receptors control their own activity by inducing the expression of syndecan-2, which then acts to propagate Notch signaling by direct receptor interaction.  相似文献   
67.
68.
TolB and Pal are members of the Tol-Pal system that spans the cell envelope of Gram-negative bacteria and contributes to the stability and integrity of the bacterial outer membrane (OM). Lipoylated Pal is tethered to the OM and binds the β-propeller domain of periplasmic TolB, which, as recent evidence suggests, disengages TolB from its interaction with other components of the Tol system in the inner membrane. Antibacterial nuclease colicins such as colicin E9 (ColE9) also bind the β-propeller domain of TolB in order to catalyze their translocation across the bacterial OM. In contrast to Pal, however, colicin binding to TolB promotes its interaction with other components of the Tol system. Here, through a series of pre-steady-state kinetic experiments utilizing fluorescence resonance energy transfer pairs within the individual protein-protein complexes, we establish the kinetic basis for such 'competitive recruitment' by the TolB-binding epitope (TBE) of ColE9. Surprisingly, the 16-residue disordered ColE9 TBE associates more rapidly with TolB than Pal, a folded 13-kDa protein. Moreover, we demonstrate that calcium ions, which bind within the confines of the TolB β-propeller domain tunnel and are known to increase the affinity of the TolB-ColE9 complex, do not exert their influence through long-range electrostatic effects, as had been predicted, but through short-range effects that slow the dissociation rate of ColE9 TBE from its complex with TolB. Our study demonstrates that an intrinsically disordered protein undergoing binding-induced folding can compete effectively with a globular protein for a common target by associating more rapidly than the globular protein.  相似文献   
69.
The structure-based design, synthesis, and biological evaluation of two novel series of potent and selective MEK kinase inhibitors are described herein. The elaboration of a lead pyrrole derivative to a bicyclic dihydroindolone core provided compounds with high potency and good drug-like pharmaceutical properties. Further scaffold modification afforded a series of dihydroindolizinone inhibitors, including an orally available advanced preclinical MEK inhibitor with potent in vivo antitumor efficacy.  相似文献   
70.
Safeguarding the welfare of animals is an important aim when defining housing and management standards in animal based, experimental research. While such standards are usually defined per animal species, it is known that considerable differences between laboratory mouse strains exist, for example with regard to their emotional traits. Following earlier experiments, in which we found that 129P3 mice show a lack of habituation of anxiety related behaviour after repeated exposure to an initially novel environment (non-adaptive profile), we here investigated four other 129 inbred mouse substrains (129S2/SvPas, 129S2/SvHsd (exp 1); 129P2 and 129X1 (exp 2)) on habituation of anxiety related behaviour. Male mice of each strain were repeatedly placed in the modified hole board test, measuring anxiety-related behaviour, exploratory and locomotor behaviour. The results reveal that all four substrains show a lack of habituation behaviour throughout the period of testing. Although not in all of the substrains a possible confounding effect of general activity can be excluded, our findings suggest that the genetic background of the 129 substrains may increase their vulnerability to cope with environmental challenges, such as exposure to novelty. This vulnerability might negatively affect the welfare of these mice under standard laboratory conditions when compared with other strains. Based on our findings we suggest to consider (sub)strain-specific guidelines and protocols, taking the (subs)train-specific adaptive capabilities into account.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号