首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1817篇
  免费   247篇
  2064篇
  2022年   15篇
  2021年   25篇
  2020年   29篇
  2019年   31篇
  2018年   25篇
  2017年   27篇
  2016年   28篇
  2015年   56篇
  2014年   62篇
  2013年   82篇
  2012年   89篇
  2011年   82篇
  2010年   61篇
  2009年   44篇
  2008年   77篇
  2007年   91篇
  2006年   54篇
  2005年   61篇
  2004年   56篇
  2003年   47篇
  2002年   53篇
  2001年   50篇
  2000年   51篇
  1999年   57篇
  1998年   27篇
  1997年   24篇
  1996年   23篇
  1995年   30篇
  1994年   26篇
  1993年   22篇
  1992年   37篇
  1991年   44篇
  1990年   35篇
  1989年   44篇
  1988年   30篇
  1987年   37篇
  1986年   34篇
  1985年   38篇
  1984年   39篇
  1983年   25篇
  1982年   27篇
  1981年   13篇
  1980年   23篇
  1979年   23篇
  1978年   13篇
  1977年   20篇
  1975年   15篇
  1974年   26篇
  1973年   23篇
  1972年   11篇
排序方式: 共有2064条查询结果,搜索用时 15 毫秒
101.
We hypothesized that elucidating the interactome of epidermal growth factor receptor (EGFR) forms that are mutated in lung cancer, via global analysis of protein–protein interactions, phosphorylation, and systematically perturbing the ensuing network nodes, should offer a new, more systems‐level perspective of the molecular etiology. Here, we describe an EGFR interactome of 263 proteins and offer a 14‐protein core network critical to the viability of multiple EGFR‐mutated lung cancer cells. Cells with acquired resistance to EGFR tyrosine kinase inhibitors (TKIs) had differential dependence of the core network proteins based on the underlying molecular mechanisms of resistance. Of the 14 proteins, 9 are shown to be specifically associated with survival of EGFR‐mutated lung cancer cell lines. This included EGFR, GRB2, MK12, SHC1, ARAF, CD11B, ARHG5, GLU2B, and CD11A. With the use of a drug network associated with the core network proteins, we identified two compounds, midostaurin and lestaurtinib, that could overcome drug resistance through direct EGFR inhibition when combined with erlotinib. Our results, enabled by interactome mapping, suggest new targets and combination therapies that could circumvent EGFR TKI resistance.  相似文献   
102.
This paper describes the purification of yolk proteins, which are important for the reproduction of egg-laying animals, and the structural characterization of two vitellogenins, VT1 and OTI-VIT-6, of the nematode Oscheius tipulae. O. tipulae is an alternative model organism to its relative, the widely used Caenorhabditis elegans, and is a good model to understand reproduction in insect parasitic nematodes of the genus Heterorhabditis. The native purified O. tipulae vitellogenin is composed of three polypeptides (VT1, VT2 and VT3), whereas in C. elegans, vitellogenin is composed of four polypeptides. The gene (Oti-vit-1) encoding yolk polypeptide VT1 has been recently identified in the genome of O. tipulae. Immunoblotting and N-terminal sequencing confirmed that VT1 is indeed coded by Oti-vit-1. Utilizing the same experimental approaches, we showed that the polypeptides VT2 and VT3 are derived from the proteolytic processing of the C- and N-terminal portions of the precursor OTI-VIT-6, respectively. We also showed that the recombinant polypeptide (P40), corresponding to the N-terminal sequence of OTI-VIT-6, preferentially interacts with a 100-kDa polypeptide found in adult worm extracts, as we have previously shown for the native vitellins of O. tipulae. Using the putative nematode vitellogenin amino acid sequences available in the UniProtKB database, we constructed a phylogenetic tree and showed that the O. tipulae vitellogenins characterized in this study are orthologous to those of the Caenorhabditis spp. Together, these results represent the first structural and functional comparative study of nematode yolk proteins outside the Caenorhabditis genus and provide insight into the evolution of these lipoproteins within the Nematode Phylum.  相似文献   
103.
The carbohydrate binding preferences of the Galalpha3Galbeta4 GlcNAc-binding lectins from Marasmius oreades and Euonymus europaeus were examined by binding to glycosphingolipids on thin-layer chromatograms and in microtiter wells. The M. oreades lectin bound to Galalpha3-terminated glycosphingolipids with a preference for type 2 chains. The B6 type 2 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) was preferred over the B5 glycosphingolipid (Galalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), suggesting that the alpha2-linked Fuc is accommodated in the carbohydrate binding site, providing additional interactions. The lectin from E. europaeus had broader binding specificity. The B6 type 2 glycosphingolipid was the best ligand also for this lectin, but binding to the B6 type 1 glycosphingolipid (Galalpha3[Fucalpha2]Galbeta3GlcNAcbeta3Galbeta4Glcbeta1Cer) was also obtained. Furthermore, the H5 type 2 glycosphingolipid (Fucalpha2Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer), devoid of a terminal alpha3-linked Gal, was preferred over the the B5 glycosphingolipid, demonstrating a significant contribution to the binding affinity by the alpha2-linked Fuc. The more tolerant nature of the lectin from E. europaeus was also demonstrated by the binding of this lectin, but not the M. oreades lectin, to the x2 glycosphingolipid (GalNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GlcNAcbeta3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer. The A6 type 2 glycosphingolipid (GalNAcalpha3[Fucalpha2]Galbeta4GlcNAcbeta3Galbeta4Glcbeta1Cer) and GalNAcalpha3Galbeta4GlcNAcbeta3Galbeta4Glcbeta1-Cer were not recognized by the lectins despite the interaction with B6 type 2 glycosphingolipid and the B5 glycosphingolipid. These observations are explained by the absolute requirement of a free hydroxyl in the 2-position of Galalpha3 and that the E. europaea lectin can accommodate a GlcNAc acetamido moiety close to this position by reorienting the terminal sugar, whereas the M. oreades lectin cannot.  相似文献   
104.
We describe a process, based on display of antibodies on the surface of filamentous bacteriophage, for selecting antibodies either by their affinity for antigen or by their kinetics of dissociation (off-rate) from antigen. For affinity selection, phage are mixed with small amounts of soluble biotinylated antigen (less than 1 microgram) such that the antigen is in excess over phage but with the concentration of antigen lower than the dissociation constant (Kd) of the antibody. Those phage bound to antigen are then selected using streptavidin-coated paramagnetic beads. The process can distinguish between antibodies with closely related affinities. For off-rate selection, antibodies are preloaded with biotinylated antigen and diluted into excess unlabelled antigen for variable times prior to capture on streptavidin-coated paramagnetic beads. To mimic the affinity maturation process of the immune system, we introduced random mutations into the antibody genes in vitro using an error-prone polymerase, and used affinity selection to isolate mutants with improved affinity. Starting with a small library (40,000 clones) of mutants (average 1.7 base changes per VH gene) of the mouse antibody B1.8, and using several rounds of affinity selection, we isolated a mutant with a fourfold improved affinity to the hapten 4-hydroxy-5-iodo-3-nitrophenacetyl-(NIP)-caproic acid (mutant Kd = 9.4(+/- 0.3) nM compared with B1.8 Kd = 41.9(+/- 1.6) nm). The relative increase in affinity of the mutant is comparable to the increase seen in the anti-4-hydroxy-3-nitrophenylacetyl/NIP-caproic acid murine secondary immune response.  相似文献   
105.
Dimeric tyrosyl-tRNA synthetase from Bacillus stearothermophilus exhibits half-of-the-sites reactivity and negative cooperativity in binding of tyrosine. Protein engineering has been applied to the enzyme to determine whether it can be reversibly dissociated into monomers and if the monomers are active. The target for mutation is the residue Phe-164. The side chain of Phe-164 in one subunit interacts with its symmetry-related partner in the other. Mutation of Phe-164----Asp-164 gives a mutant [TyrTS(Asp-164)] that undergoes dissociation at high pH when the aspartate residues are ionized. The monomer is inactive and does not bind tyrosine. Dissociation is enhanced at low concentrations of enzyme by a mass action effect. Kinetic and binding measurements on TyrTS(Asp-164) with tyrosine and tyrosyl adenylate show that the monomer has very weak affinity for these ligands. Accordingly, dimerization is favored by high concentrations of tyrosine and ATP since the dimeric form has a high affinity for the ligands. The presence of tRNA does not encourage dimer formation, and so it must bind to the monomer. TyrTS(Asp-164) is fully active at pH 6 where dimerization is favored but has low activity at pH 7.8 where dissociation is favored. It should now prove possible to engineer heterodimers that may be used to investigate the subunit interactions further.  相似文献   
106.
Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances than bats.  相似文献   
107.
An industry‐relevant method for pre‐lithiation of lithium‐ion capacitors to balance the first charge irreversibility is demonstrated, which addresses the prime bottleneck for their market integration. Based on a composite positive electrode that integrates pyrene monomers and an insoluble lithiated base, Li3PO4, a “cascade‐type” process involving two consecutive irreversible reactions is proposed: i) oxidative electropolymerization of the pyrene moieties releases electrons and protons; ii) protons are captured by Li3PO4 and exchanged for a stoichiometric amount of Li+ into the electrolyte. (1H, 19F, and 31P) NMR spectroscopy, operando X‐ray diffraction, and Raman spectroscopy support this mechanism. By decoupling the irreversible source of lithium ions from electrons, the cascade‐type pre‐lithiation allows the simultaneous enhancement of the capacity of the positive electrode, thanks to p‐doping of the resulting polymer. Remarkably, the proton scavenging properties of Li3PO4 also boost the polymerization process, which enables a 16% increase in capacity without detrimental effect on power properties and cyclability. Full cells integrating a cheap carbon black based negative electrode, show much‐improved capacity of 17 mAh g‐1electrodes (44 F g‐1electrodes, 3–4.4 V) and excellent stability over 2200 cycles at 1 A g‐1. Thanks to its versatile chemistry and flexibility this approach in principle can be applied to any kind of ion‐battery.  相似文献   
108.
Three groups of specialist nectar-feeders covering a continuous size range from insects, birds and bats have evolved the ability for hovering flight. Among birds and bats these groups generally comprise small species, suggesting a relationship between hovering ability and size. In this study we established the scaling relationship of hovering power with body mass for nectar-feeding glossophagine bats (Phyllostomidae). Employing both standard and fast-response respirometry, we determined rates of gas exchange in Hylonycteris underwoodi (7 g) and Choeronycteris mexicana (13–18 g) during hover-feeding flights at an artificial flower that served as a respirometric mask to estimate metabolic power input. The O2 uptake rate ( o2) in ml g−1 h−1 (and derived power input) was 27.3 (1.12 W or 160 W kg−1) in 7-g Hylonycteris and 27.3 (2.63 W or 160 W kg−1) in 16.5-g Choeronycteris and thus consistent with measurements in 11.9-g Glossophagasoricina (158 W kg−1, Winter 1998). o2 at the onset of hovering was also used to estimate power during forward flight, because after a transition from level forward to hovering flight gas exchange rates initially still reflect forward flight rates. o2 during short hovering events (<1.5 s) was 19.0 ml g−1 h−1 (1.8 W) in 16-g Choeronycteris, which was not significantly different from a previous, indirect estimate of the cost of level forward flight (2.1 W, Winter and von Helversen 1998). Our estimates suggest that power input during hovering flight P h (W) increased with body mass M (kg) within 13–18-g Choeronycteris (n = 4) as P h  = 3544 (±2057 SE) M 1.76 (±0.21 SE) and between different glossophagine bat species (n = 3) as P h  = 128 (±2.4 SE) M 0.95 (±0.034 SE). The slopes of three scaling functions for flight power (hovering, level forward flight at intermediate speed and submaximal flight power) indicate that: 1. The relationship between flight power to flight speed may change with body mass in the 6–30-g bats from a J- towards a U-shaped curve. 2. A metabolic constraint (hovering flight power equal maximal flight power) may influence the upper size limit of 30–35 g for this group of flower specialists. Mass-specific power input (W kg−1) during hovering flight appeared constant with regard to body size (for the mass ranges considered), but differed significantly (P < 0.001) between groups. Group means were 393 W kg−1 (sphingid moths), 261 W kg−1 (hummingbirds) and 159 W kg−1 (glossophagine bats). Thus, glossophagine bats expend the least metabolic power per unit of body mass supported during hovering flight. At a metabolic power input of 1.1 W a glossophagine bat can generate the lift forces necessary for balancing 7 g against gravitation, whereas a hummingbird can support 4 g and a sphingid moth only 3 g of body mass with the same amount of metabolic energy. These differences in power input were not fully explained by differences in induced power output estimated from Rankine-Froude momentum-jet theory. Accepted: 10 November 1998  相似文献   
109.
The Ghanaian cocoa bean heap fermentation process was studied through a multiphasic approach, encompassing both microbiological and metabolite target analyses. A culture-dependent (plating and incubation, followed by repetitive-sequence-based PCR analyses of picked-up colonies) and culture-independent (denaturing gradient gel electrophoresis [DGGE] of 16S rRNA gene amplicons, PCR-DGGE) approach revealed a limited biodiversity and targeted population dynamics of both lactic acid bacteria (LAB) and acetic acid bacteria (AAB) during fermentation. Four main clusters were identified among the LAB isolated: Lactobacillus plantarum, Lactobacillus fermentum, Leuconostoc pseudomesenteroides, and Enterococcus casseliflavus. Other taxa encompassed, for instance, Weissella. Only four clusters were found among the AAB identified: Acetobacter pasteurianus, Acetobacter syzygii-like bacteria, and two small clusters of Acetobacter tropicalis-like bacteria. Particular strains of L. plantarum, L. fermentum, and A. pasteurianus, originating from the environment, were well adapted to the environmental conditions prevailing during Ghanaian cocoa bean heap fermentation and apparently played a significant role in the cocoa bean fermentation process. Yeasts produced ethanol from sugars, and LAB produced lactic acid, acetic acid, ethanol, and mannitol from sugars and/or citrate. Whereas L. plantarum strains were abundant in the beginning of the fermentation, L. fermentum strains converted fructose into mannitol upon prolonged fermentation. A. pasteurianus grew on ethanol, mannitol, and lactate and converted ethanol into acetic acid. A newly proposed Weissella sp., referred to as “Weissella ghanaensis,” was detected through PCR-DGGE analysis in some of the fermentations and was only occasionally picked up through culture-based isolation. Two new species of Acetobacter were found as well, namely, the species tentatively named “Acetobacter senegalensis” (A. tropicalis-like) and “Acetobacter ghanaensis” (A. syzygii-like).  相似文献   
110.
To assist in the analysis of plant gene functions we have generated a new Arabidopsis insertion mutant collection of 90 000 lines that carry the T-DNA of Agrobacterium gene fusion vector pPCV6NFHyg. Segregation analysis indicates that the average frequency of insertion sites is 1.29 per line, predicting about 116 100 independent tagged loci in the collection. The average T-DNA copy number estimated by Southern DNA hybridization is 2.4, as over 50% of the insertion loci contain tandem T-DNA copies. The collection is pooled in two arrays providing 40 PCR templates, each containing DNA from either 4000 or 5000 individual plants. A rapid and sensitive PCR technique using high-quality template DNA accelerates the identification of T-DNA tagged genes without DNA hybridization. The PCR screening is performed by agarose gel electrophoresis followed by isolation and direct sequencing of DNA fragments of amplified T-DNA insert junctions. To estimate the mutation recovery rate, 39 700 lines have been screened for T-DNA tags in 154 genes yielding 87 confirmed mutations in 73 target genes. Screening the whole collection with both T-DNA border primers requires 170 PCR reactions that are expected to detect a mutation in a gene with at least twofold redundancy and an estimated probability of 77%. Using this technique, an M2 family segregating a characterized gene mutation can be identified within 4 weeks.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号