首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   16篇
  139篇
  2021年   2篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   2篇
  2012年   7篇
  2011年   9篇
  2010年   3篇
  2009年   1篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   7篇
  2004年   3篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   5篇
  1988年   5篇
  1987年   4篇
  1986年   1篇
  1985年   2篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1977年   2篇
  1975年   2篇
  1974年   7篇
  1973年   2篇
  1972年   4篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   3篇
  1966年   2篇
排序方式: 共有139条查询结果,搜索用时 0 毫秒
21.
This presentation develops a theory of the evolutionary origin and ecological implications of toxic microbial secondary metabolites. The theory is based on a model system that outlines cause—effect associations between pertinent biotypes in the aflatoxin contamination of developing maize kernels. The model suggests that the aflatoxin-producing fungi are natural digestive tract inhabitants of a number of insect species that feed on developing kernels. During feeding, the insect larvae introduce fungal propagules and provide infection sites on damaged kernels. The fungal association with insects exhibits extraordinary variability, ranging from symbiotic to pathogenic. Elaboration of aflatoxin by the fungus facilitates the pathogenic process in host insects. The theory contends that genetic information for secondary microbial metabolites evolved during ecosystem disequilibria. During periods of ecological stability, mechanisms evolved for repression of toxic secondary metabolite biosynthesis. The theory broadly suggests that contemporary agricultural activities presents the requisite milieu for production or toxic microbial secondary metabolites.  相似文献   
22.
A cDNA encoding a recombinant Eimeria acervulina antigen, designated EAMZp30-47, that contains an epitope shared among several surface and rhoptry proteins of merozoites was characterized. The respective parasite proteins are between 30 and 47 kDa as revealed by immunostaining of nitrocellulose membrane containing extracts of 125I-labeled merozoites. As indicated by immunofluorescence and immunoelectron microscopic staining, the reactive epitope was localized to both the surface membrane and the internal rhoptries of this asexual stage of the parasite. The recombinant beta-galactosidase fusion protein EAMZp30-47 is 130 kDa, thus representing 15 kDa or 30-50% of the respective parasite protein. Purified EAMZp30-47 stimulates T cells from E. acervulina-immune inbred chickens, but is not recognized by immune chicken serum, suggesting that T cell and not B cell epitopes recognized by the host immune system during a natural infection are present on the recombinant protein. Northern and Southern blot hybridization experiments indicated that expression of EAMZp30-47 is restricted to the merozoite stage of the parasite and the gene occurs as a single copy sequence within the genome.  相似文献   
23.
Hypothyroid K-strain chickens were produced by neonatal thyroidectomy and treatment with 6-propyl-2-thiouracil. Thyroidectomized birds were given 0, 1.5, 4.5, 15, or 45 micrograms/kg body wt of triiodothyronine (T3) by daily injection. At 5 weeks of age, thymocytes were prepared for flow cytometric analysis of CT-1a, CD3, CD4, and CD8 expression. Sham-operated birds had the smallest proportion of CT-1a+ cells and the brightest CT-1a+ cells. Unsupplemented thyroidectomized birds presented an inverse picture, while T3-treated thyroidectomized birds were intermediate. Fewer and less brightly labeled CD3+, CD4+, and CD8+ cells were associated with sham-operated birds or with higher levels of T3 replacement. Low levels (1.5 microgram/kg body wt) or no T3 treatment produced a greater proportion of positive, highly fluorescent cells. The ratios of CD4+ to CD8+ thymocytes were increased (P less than or equal to 0.05) by T3 supplementation. Functionally, thyroidectomy produced a decrease in mitogen-stimulated proliferation of peripheral blood lymphocytes. This effect was ameliorated by T3 supplementation. Further, thyroidectomy produced an elevation of plasma growth hormone concentrations. These results suggest that thyroid factors and alterations of thymic status significantly affect the generation of specific thymus-derived lymphocyte populations and their functional capabilities, perhaps due to changes in the thymic microenvironment. These alterations may have important consequences for the development of immunocompetence and disease resistance in chickens.  相似文献   
24.
The roles of major histocompatibility complex (MHC) and non-MHC-linked genes in the genetic control of disease susceptibility and the development of protective immunity to Eimeria acervulina infection were investigated in six 15I5-B congenic and four different strains of chickens characterized for the MHC. When oocyst production was assessed, wide variations were noted following initial and challenge infections among the strains of chickens tested. In general, 15.N-21, 15.P-13, B21, B19, SC, and FP chickens were protected following challenge infection whereas 15I5, 15.P-19, 15.7-2, and 15.6-2 chickens were not. Strains of chickens sharing a same B haplotype on different genetic backgrounds did not show comparable levels of protection. These results lead to the view that non-MHC-linked genes have a profound influence on the outcome of the host response to E. acervulina infection. Chickens infected twice at 1-month intervals by an oral inoculation with E. acervulina developed both coccidial-specific antibody and T-cell responses. E. acervulina infected chickens showed T-cell-mediated immune responses to the intact sporozoites as well as to recombinant proteins, p130 of sporozoites and p150 of merozoites. Both p130 and p150 antigens have been identified and characterized previously. Sera obtained from all infected chickens recognized the p150 merozoite protein, but not the p130 sporozoite protein in immunoblots. In general, the cellular response, but not the antibody response to the p150 recombinant surface merozoite antigen correlated with the degree of protection following the challenge infection. These results suggest that the strains of chickens having improved protection against challenge infection demonstrate higher T-cell responses to the recombinant surface merozoite protein, p150.  相似文献   
25.
Seven human immunodeficiency virus gag polypeptides were identified in the purified virus and in infected CD4+ lymphocytes by peptide mapping and limited amino acid sequencing of immune-purified proteins. Two gag polyproteins of 55,000 (p55) and 41,000 (p41) daltons were rapidly labeled and readily processed into the major internal gag proteins that were aligned within the gag open reading frame (ORF) as NH2-p16 (MA)-p24 (CA)-p9 (NC)-p7-COOH. The myristoylated p16 (matrix, MA) protein was processed from the myristoylated p55 gag precursor protein. The immunoreactivity of the p16 (MA) protein with region-specific gag antisera and the conservation of the N-terminal myristyl group of the p55 precursor protein in p16 (MA) confirmed its position as the N-terminal-most protein. The p9 (nucleocapsid, NC) protein was localized to residue 378 of the gag ORF, next to the C terminus of the p24/p25 (core antigen, CA) protein. The p9 protein had a repeating Cys residue containing motif which is found in the nucleic acid-binding Cys residue-containing proteins of retroviruses. The p24 (CA) protein, which was localized to residue 133 of the gag ORF, was apparently derived by C-terminal processing of an intermediate polypeptide, p25. Both the mature p24 (CA) and p16 (MA) proteins were phosphorylated at Ser residue(s). We also identified two forms of gag p41 species, one resulting from the C-terminal processing of p55 and the other originating either from N-terminal processing of p55 or from de novo synthesis.  相似文献   
26.
MUC1 is a membrane-tethered mucin glycoprotein expressed on the apical surface of mucosal epithelial cells. Previous in vivo and in vitro studies established that MUC1 counterregulates airway inflammation by suppressing TLR signaling. In this article, we elucidate the mechanism by which MUC1 inhibits TLR5 signaling. Overexpression of MUC1 in HEK293 cells dramatically reduced Pseudomonas aeruginosa-stimulated IL-8 expression and decreased the activation of NF-κB and MAPK compared with cells not expressing MUC1. However, overexpression of MUC1 in HEK293 cells did not affect NF-κB or MAPK activation in response to TNF-α. Overexpression of MyD88 abrogated the ability of MUC1 to inhibit NF-κB activation, and MUC1 overexpression inhibited flagellin-induced association of TLR5/MyD88 compared with controls. The MUC1 cytoplasmic tail associated with TLR5 in all cells tested, including HEK293T cells, human lung adenocarcinoma cell line A549 cells, and human and mouse primary airway epithelial cells. Activation of epidermal growth factor receptor tyrosine kinase with TGF-α induced phosphorylation of the MUC1 cytoplasmic tail at the Y46EKV sequence and increased association of MUC1/TLR5. Finally, in vivo experiments demonstrated increased immunofluorescence colocalization of Muc1/TLR5 and Muc1/phosphotyrosine staining patterns in mouse airway epithelium and increased Muc1 tyrosine phosphorylation in mouse lung homogenates following P. aeruginosa infection. In conclusion, epidermal growth factor receptor tyrosine phosphorylates MUC1, leading to an increase in its association with TLR5, thereby competitively and reversibly inhibiting recruitment of MyD88 to TLR5 and downstream signaling events. This unique ability of MUC1 to control TLR5 signaling suggests its potential role in the pathogenesis of chronic inflammatory lung diseases.  相似文献   
27.
A homologous family of UDP- N -acetylgalactosamine: polypeptide N - acetylgalactosaminyltransferases (GalNAc-transferases) initiate O- glycosylation. These transferases share overall amino acid sequence similarities of approximately 45-50%, but segments with higher similarities of approximately 80% are found in the putative catalytic domain. Here we have characterized the genomic organization of the coding regions of three GalNAc-transferase genes and determined their chromosomal localization. The coding regions of GALNT1 , -T2 , and -T3 were found to span 11, 16, and 10 exons, respectively. Several intron/exon boundaries were conserved within the three genes. One conserved boundary was shared in a homologous C. elegans GalNAc- transferase gene. Fluorescence in situ hybridization showed that GALNT1 , -T2 , and -T3 are localized at chromosomes 18q12-q21, 1q41-q42, and 2q24-q31, respectively. These results suggest that the members of the polypeptide GalNAc-transferase family diverged early in evolution from a common ancestral gene through gene duplication.   相似文献   
28.
29.
We reported previously that Muc1 on the surface of epithelial cells was a receptor for Pseudomonas aeruginosa (Lillehoj EP, Kim BT, and Kim KC. Am J Physiol Lung Cell Mol Physiol 282: L751-L756, 2002). Other studies showed that the Muc1 cytoplasmic tail (CT) contains multiple phosphorylation sites, some of which are phosphorylated constitutively and associated with signaling proteins. However, the relationship between extracellular P. aeruginosa binding and intracellular signaling is unknown. To investigate the signaling mechanism of Muc1, this study examined phosphorylation of its CT and activation of the extracellular signal-regulated kinase (ERK) in response to stimulation by P. aeruginosa or purified flagellin. Our results showed 1) the Muc1 CT was phosphorylated constitutively on serine and tyrosine, 2) serine phosphorylation was stimulated by bacterial cells or flagellin, and 3) binding of P. aeruginosa or flagellin to Muc1 induced phosphorylation of ERK. These results are the first to demonstrate Muc1 CT phosphorylation and ERK activation in response to a clinically important airway pathogen.  相似文献   
30.
Mucus hypersecretion associated with airway inflammation is reduced by glucocorticoids. Two mechanisms of glucocorticoid-mediated inhibition of mucus production have been proposed, direct inhibition of mucus production by airway epithelial cells and indirectly through inhibition of proinflammatory mediators that stimulate mucus production. In this study, we examined the effect of dexamethasone (DEX) on mRNA expression and synthesis of MUC5AC by A549 human lung adenocarcinoma cells as well as Muc5ac and total high-molecular-weight (HMW) mucins by primary rat tracheal surface epithelial (RTSE) cells. Our results showed that in primary RTSE cells, DEX 1) dose dependently suppressed Muc5ac mRNA levels, but the levels of cellular Muc5ac protein and HMW mucins were unaffected; 2) did not affect constitutive or UTP-stimulated mucin secretion; 3) enhanced the translation of Muc5ac; and 4) increased the stability of intracellular Muc5ac protein by a mechanism other than the inhibition of the proteasomal degradation. In A549 cells, however, DEX suppressed both MUC5AC mRNA levels and MUC5AC protein secretion in a dose-dependent manner. We conclude that whereas DEX inhibits the levels of Muc5ac mRNA in primary RTSE cells, the levels of Muc5ac protein remain unchanged as a consequence of increases in both translation and protein stability. Interestingly, some of the effects of DEX were opposite in a cell line.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号