首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   3篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   8篇
  2006年   5篇
  2005年   8篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   5篇
  2000年   6篇
  1999年   3篇
  1995年   1篇
  1994年   1篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1984年   1篇
排序方式: 共有77条查询结果,搜索用时 38 毫秒
61.
Serum concentrations of three angiogenic cytokines: vascular endothelial growth factor (VEGF), stromal cell-derived factor-1 (SDF-1) and placental growth factor (PIGF) and soluble vascular cell adhesion molecule 1 (sVCAM-1), were investigated in the serum of 61 patients with systemic lupus erythematosus (SLE) and 20 healthy subjects. The possible association between serum levels of these proteins and SLE activity, as well as correlation between the concentrations of cytokines were also analysed. All of these factors were detectable in all SLE patients and the healthy control group. The median concentration of VEGF was higher in active SLE (386 pg/mL) than in inactive disease (327 pg/mL) or in the control group (212 pg/mL, p<0.004). The median serum level of SDF-1 was higher in SLE patients (1,814 pg/mL) than in the control group (1,507 pg/mL, p<0.02). The median concentration of PIGF was higher (14 pg/mL) in SLE patients than in the control group (12 pg/mL, p=0.03), and particularly in active disease (17 pg/mL) as compared to the inactive phase (13 pg/mL, p=0.01). The correlations between the levels of cytokines examined and clinical features, laboratory abnormalities and the type of treatment were also analysed. We found a positive correlation between serum concentrations of PIGF and SLE activity according to SLAM score (p=0.33, p=0.13).  相似文献   
62.
Human ARHGEF11, a PDZ-domain-containing Rho guanine nucleotide exchange factor (RhoGEF), has been studied primarily in tissue culture, where it exhibits transforming ability, associates with and modulates the actin cytoskeleton, regulates neurite outgrowth, and mediates activation of Rho in response to stimulation by activated Galpha12/13 or Plexin B1. The fruit fly homolog, RhoGEF2, interacts with heterotrimeric G protein subunits to activate Rho, associates with microtubules, and is required during gastrulation for cell shape changes that mediate epithelial folding. Here, we report functional characterization of a zebrafish homolog of ARHGEF11 that is expressed ubiquitously at blastula and gastrula stages and is enriched in neural tissues and the pronephros during later embryogenesis. Similar to its human homolog, zebrafish Arhgef11 stimulated actin stress fiber formation in cultured cells, whereas overexpression in the embryo of either the zebrafish or human protein impaired gastrulation movements. Loss-of-function experiments utilizing a chromosomal deletion that encompasses the arhgef11 locus, and antisense morpholino oligonucleotides designed to block either translation or splicing, produced embryos with ventrally-curved axes and a number of other phenotypes associated with ciliated epithelia. Arhgef11-deficient embryos often exhibited altered expression of laterality markers, enlarged brain ventricles, kidney cysts, and an excess number of otoliths in the otic vesicles. Although cilia formed and were motile in these embryos, polarized distribution of F-actin and Na(+)/K(+)-ATPase in the pronephric ducts was disturbed. Our studies in zebrafish embryos have identified new, essential roles for this RhoGEF in ciliated epithelia during vertebrate development.  相似文献   
63.
In vertebrates, paraxial mesoderm is partitioned into repeating units called somites. It is thought that the mechanical forces arising from compaction of the presumptive internal cells of prospective somites cause them to detach from the unsegmented presomitic mesoderm [1-3]. To determine how prospective somites physically segregate from each other, we used time-lapse microscopy to analyze the mechanics underlying early somitogenesis in wild-type zebrafish and in the mutants trilobite(m209) (tri), knypek(m119) (kny), and kny;tri, which are defective in convergent extension during gastrulation. Formation of somite boundaries in all of these embryos involved segregation, local alignment, and cell-shape changes of presumptive epitheloid border cells along nascent intersomitic boundaries. Although kny;tri somites formed without convergence of the presomitic mesoderm and were composed of only two cells in their anteroposterior (AP) dimension, they still exhibited AP intrasegmental polarity. Furthermore, morphogenesis of somite boundaries in these embryos proceeded in a manner similar to that in wild-type embryos. Thus, intersomitic boundary formation in zebrafish involves short-range movements of presumptive border cells that do not require mechanical forces generated by internal cells or compaction of the presomitic mesoderm.  相似文献   
64.
α and β chains of hemoglobin have been modified with cobalt(II) tetrasulfonated phthalocyanine in place of heme. They display properties very similar to those of iron(II) phthalocyanine modified α and β chains. Mixed together they form tetrameric cobalt(II) phthalocyanine hemoglobin.Incorporation of Co(II)L into α and β globins results in stabilization of the protein structure, which is shown by a marked increase in its helicity content. Cobalt phthalocyanine substituted α and β chains are able to combine reversibly with oxygen giving more stable oxygenated species than their native analogues. The rate of both processes is lower in the case of the modified α chain. Recombination of the phthalocyanine α and β chains with the alternate heme containing chains give tetrameric hybrid hemoglobins. These comprise two phthalocyanine modified subunits and two heme containing subunits. The helicity content of the tetrameric hybrid hemoglobin calculated for one subunit is lower that the arithmetic mean of helicities for its isolated subunits. This suggests a destabilizing chain-chain interaction within the tetramer. Unlike in the separated subunits, oxygen binding by hybrid hemoglobins is irreversible. Deoxygenation by argon bubbling leads to the formation of inactive species which in oxygen atmosphere undergo irreversible oxidation with destruction of the complex.  相似文献   
65.
Mutations in the zebrafish knypek locus impair gastrulation movements of convergent extension that narrow embryonic body and elongate it from head to tail. We demonstrate that knypek regulates cellular movements but not cell fate specification. Convergent extension movement defects in knypek are associated with abnormal cell polarity, as mutant cells fail to elongate and align medio-laterally. Positional cloning reveals that knypek encodes a member of the glypican family of heparan sulfate proteoglycans. Double mutant and overexpression analyses show that Knypek potentiates Wnt11 signaling, mediating convergent extension. These studies provide experimental and genetic evidence that glypican Knypek acts during vertebrate gastrulation as a positive modulator of noncanonical Wnt signaling to establish polarized cell behaviors underlying convergent extension movements.  相似文献   
66.
Preparations of cis- and trans-platinum(II) complexes of diethyl (pyridin-4-ylmethyl)phosphate (4-pmOpe) have been described. These complexes were identified and characterized by far-IR, 1H NMR, 13C NMR, 31P NMR and 195Pt NMR and microanalyses. The crystal and molecular structure of trans-platinum(II) complex i.e., trans-[PtCl2(4-pmOpe)2] was determined by the X-ray diffraction. Novel complexes were assayed for their potential antiproliferative effect against HT 29 (colorectal adenocarcinoma) and A 549 (non-small cell lung cancer) cell lines as well as normal human peripheral blood lymphocytes. The results obtained indicate that novel analogues of cis-diamminedichloroplatinum(II) cause inhibition of cells growth which suggest that they could be chemotherapeutic drugs in the future.  相似文献   
67.
Galpha(12/13) have been implicated in numerous cellular processes, however, their roles in vertebrate gastrulation are largely unknown. Here, we show that during zebrafish gastrulation, suppression of both Galpha(12) and Galpha(13) signaling by overexpressing dominant negative proteins and application of antisense morpholino-modified oligonucleotide translation interference disrupted convergence and extension without changing embryonic patterning. Analyses of mesodermal cell behaviors revealed that Galpha(12/13) are required for cell elongation and efficient dorsalward migration during convergence independent of noncanonical Wnt signaling. Furthermore, Galpha(12/13) function cell-autonomously to mediate mediolateral cell elongation underlying intercalation during notochord extension, likely acting in parallel to noncanonical Wnt signaling. These findings provide the first evidence that Galpha(12) and Galpha(13) have overlapping and essential roles in distinct cell behaviors that drive vertebrate gastrulation.  相似文献   
68.
During vertebrate gastrulation, convergence and extension cell movements both narrow and lengthen the forming embryonic axis. Concurrently, positional information established principally by the ventral-to-dorsal gradient of bone morphogenetic protein activity specifies cell fates within the gastrula. New data, primarily from zebrafish, have identified domains of distinct convergence and extension movements, and have established a role for the noncanonical Wnt signaling pathway in promoting the mediolateral cell polarization that underlies this morphogenetic process. Other observations suggest the intriguing possibility that positional information regulates convergence and extension movements in parallel with cell-fate specification.  相似文献   
69.
Embryonic morphogenesis is driven by a suite of cell behaviours, including coordinated shape changes, cellular rearrangements and individual cell migrations, whose molecular determinants are largely unknown. In the zebrafish, Dani rerio, trilobite mutant embryos have defects in gastrulation movements and posterior migration of hindbrain neurons. Here, we have used positional cloning to demonstrate that trilobite mutations disrupt the transmembrane protein Strabismus (Stbm)/Van Gogh (Vang), previously associated with planar cell polarity (PCP) in Drosophila melanogaster, and PCP and canonical Wnt/beta-catenin signalling in vertebrates. Our genetic and molecular analyses argue that during gastrulation, trilobite interacts with the PCP pathway without affecting canonical Wnt signalling. Furthermore, trilobite may regulate neuronal migration independently of PCP molecules. We show that trilobite mediates polarization of distinct movement behaviours. During gastrulation convergence and extension movements, trilobite regulates mediolateral cell polarity underlying effective intercalation and directed dorsal migration at increasing velocities. In the hindbrain, trilobite controls effective migration of branchiomotor neurons towards posterior rhombomeres. Mosaic analyses show trilobite functions cell-autonomously and non-autonomously in gastrulae and the hindbrain. We propose Trilobite/Stbm mediates cellular interactions that confer directionality on distinct movements during vertebrate embryogenesis.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号