首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1247篇
  免费   84篇
  国内免费   1篇
  1332篇
  2023年   6篇
  2022年   13篇
  2021年   35篇
  2020年   29篇
  2019年   29篇
  2018年   38篇
  2017年   47篇
  2016年   24篇
  2015年   62篇
  2014年   66篇
  2013年   101篇
  2012年   109篇
  2011年   99篇
  2010年   60篇
  2009年   55篇
  2008年   85篇
  2007年   67篇
  2006年   63篇
  2005年   64篇
  2004年   59篇
  2003年   55篇
  2002年   49篇
  2001年   9篇
  2000年   5篇
  1999年   5篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1975年   1篇
  1974年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1962年   1篇
排序方式: 共有1332条查询结果,搜索用时 15 毫秒
61.
Human multidrug resistance protein 1 (MRP1) is a member of the ATP-binding cassette transporter family and transports chemotherapeutic drugs as well as diverse organic anions such as leukotriene LTC(4). The transport of chemotherapeutic drugs requires the presence of reduced GSH. By using hydrogen/deuterium exchange kinetics and limited trypsin digestion, the structural changes associated with each step of the drug transport process are analyzed. Purified MRP1 is reconstituted into lipid vesicles with an inside-out orientation, exposing its cytoplasmic region to the external medium. The resulting proteoliposomes have been shown previously to exhibit both ATP-dependent drug transport and drug-stimulated ATPase activity. Our results show that during GSH-dependent drug transport, MRP1 does not undergo secondary structure changes but only modifications in its accessibility toward the external environment. Drug binding induces a restructuring of MRP1 membrane-embedded domains that does not affect the cytosolic domains, including the nucleotide binding domains, responsible for ATP hydrolysis. This demonstrates that drug binding to MRP1 is not sufficient to propagate an allosteric signal between the membrane and the cytosolic domains. On the other hand, GSH binding induces a conformational change that affects the structural organization of the cytosolic domains and enhances ATP binding and/or hydrolysis suggesting that GSH-mediated conformational changes are required for the coupling between drug transport and ATP hydrolysis. Following ATP binding, the protein adopts a conformation characterized by a decreased stability and/or an increased accessibility toward the aqueous medium. No additional change in the accessibility toward the solvent and/or the stability of this specific conformational state and no change of the transmembrane helices orientation are observed upon ATP hydrolysis. Binding of a non-transported drug affects the dynamic changes occurring during ATP binding and hydrolysis and restricts the movement of the drug and its release.  相似文献   
62.
cis-Prenyltransferases (CPTs) comprise numerous enzymes synthesizing isoprenoid hydrocarbon skeleton with isoprenoid units in the cis (Z) configuration. The chain-length specificity of a particular plant CPT is in most cases unknown despite the composition of the accumulated isoprenoids in the tissue of interest being well established. In this report AtCPT6, one of the nine Arabidopsis thaliana CPTs, is shown to catalyze the synthesis of a family of very short-chain polyisoprenoid alcohols of six, seven, and eight isoprenoid units, those of seven units dominating. The product specificity of AtCPT6 was established in vivo following its expression in the heterologous system of the yeast Saccharomyces cerevisiae and was confirmed by the absence of specific products in AtCPT6 T-DNA insertion mutants and their overaccumulation in AtCPT6-overexpressing plants. These observations are additionally validated in silico using an AtCPT6 model obtained by homology modeling. AtCPT6 only partially complements the function of the yeast homologue of CPT-Rer2 since it restores the growth but not protein glycosylation in rer2Δ yeast. This is the first in planta characterization of specific products of a plant CPT producing polyisoprenoids. Their distribution suggests that a joint activity of several CPTs is required to produce the complex mixture of polyisoprenoid alcohols found in Arabidopsis roots.  相似文献   
63.
In Bahia Chasco, Atacama, the integrifolia morph of Macrocystis forms one of the most important kelp forests in northern Chile. In order to determine effects of local harvesting policies, we evaluated the population dynamics of this resource in intact, frequently disturbed, and permanently and completely harvested areas. Recruitment, frond length, reproductive phenology and standing crop were assessed monthly. In intact areas, frond length and ratio of reproductive individuals were higher, but recruitment was poorly stimulated. On the other hand, complete harvest had an important effect on Macrocystis population dynamics. Whereas recruitment and growth were much higher after harvest events, reproductive phenology was lower. The harvest techniques with different frequencies practiced by Bahia Chasco fishermen were less harmful than complete harvest, and we conclude that current exploitation techniques applied in this location are not deleterious for the giant kelp beds. They even have favorable effects by renewing the population through stimulation of sexual reproduction, recruitment and growth of young individuals.  相似文献   
64.
BackgroundThe application of the Shuttle Walking Test (SWT) to assess cardiorespiratory fitness and the intensity of this test in healthy participants has rarely been studied. This study aimed to assess and correlate the cardiorespiratory responses of the SWT with the cardiopulmonary exercise testing (CEPT) and to develop a regression equation for the prediction of peak oxygen uptake (VO2 peak) in healthy sedentary adult men.MethodsIn the first stage of this study, 12 participants underwent the SWT and the CEPT on a treadmill. In the second stage, 53 participants underwent the SWT twice. In both phases, the VO2 peak, respiratory exchange ratio (R), and heart rate (HR) were evaluated.ResultsSimilar results in VO2 peak (P>0.05), R peak (P>0.05) and predicted maximum HR (P>0.05) were obtained between the SWT and CEPT. Both tests showed strong and significant correlations of VO2 peak (r = 0.704, P = 0.01) and R peak (r = 0.737, P<0.01), as well as the agreement of these measurements by Bland-Altman analysis. Body mass index and gait speed were the variables that explained 40.6% (R2 = 0.406, P = 0.001) of the variance in VO2 peak. The results obtained by the equation were compared with the values obtained by the gas analyzer and no significant difference between them (P>0.05) was found.ConclusionsThe SWT produced maximal cardiorespiratory responses comparable to the CEPT, and the developed equation showed viability for the prediction of VO2 peak in healthy sedentary men.  相似文献   
65.
Membrane repair is mediated by multiprotein complexes, such as that formed between the dimeric EF-hand protein S100A10, the calcium- and phospholipid-binding protein annexin A2, the enlargeosome protein AHNAK, and members of the transmembrane ferlin family. Although interactions between these proteins have been shown, little is known about their structural arrangement and mechanisms of formation. In this work, we used a non-covalent complex between S100A10 and the N terminus of annexin A2 (residues 1-15) and a designed hybrid protein (A10A2), where S100A10 is linked in tandem to the N-terminal region of annexin A2, to explore the binding region, stoichiometry, and affinity with a synthetic peptide from the C terminus of AHNAK. Using multiple biophysical methods, we identified a novel asymmetric arrangement between a single AHNAK peptide and the A10A2 dimer. The AHNAK peptide was shown to require the annexin A2 N terminus, indicating that the AHNAK binding site comprises regions on both S100A10 and annexin proteins. NMR spectroscopy was used to show that the AHNAK binding surface comprised residues from helix IV in S100A10 and the C-terminal portion from the annexin A2 peptide. This novel surface maps to the exposed side of helices IV and IV' of the S100 dimeric structure, a region not identified in any previous S100 target protein structures. The results provide the first structural details of the ternary S100A10 protein complex required for membrane repair.  相似文献   
66.
Although NLRC4/IPAF activation by flagellin has been extensively investigated, the downstream signaling pathways and the mechanisms responsible for infection clearance remain unclear. In this study, we used mice deficient for the inflammasome components in addition to wild-type (WT) Legionella pneumophila or bacteria deficient for flagellin (flaA) or motility (fliI) to assess the pathways responsible for NLRC4-dependent growth restriction in vivo and ex vivo. By comparing infections with WT L. pneumophila, fliI, and flaA, we found that flagellin and motility are important for the colonization of the protozoan host Acanthamoeba castellanii. However, in macrophages and mammalian lungs, flagellin expression abrogated bacterial replication. The flagellin-mediated growth restriction was dependent on NLRC4, and although it was recently demonstrated that NLRC4 is able to recognize bacteria independent of flagellin, we found that the NLRC4-dependent restriction of L. pneumophila multiplication was fully dependent on flagellin. By examining infected caspase-1(-/-) mice and macrophages with flaA, fliI, and WT L. pneumophila, we could detect greater replication of flaA, which suggests that caspase-1 only partially accounted for flagellin-dependent growth restriction. Conversely, WT L. pneumophila multiplied better in macrophages and mice deficient for NLRC4 compared with that in macrophages and mice deficient for caspase-1, supporting the existence of a novel caspase-1-independent response downstream of NLRC4. This response operated early after macrophage infection and accounted for the restriction of bacterial replication within bacteria-containing vacuoles. Collectively, our data indicate that flagellin is required for NLRC4-dependent responses to L. pneumophila and that NLRC4 triggers caspase-1-dependent and -independent responses for bacterial growth restriction in macrophages and in vivo.  相似文献   
67.
Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD), Gerstmann-Sträussler-Scheinker (GSS) syndrome and fatal familial insomnia (FFI). The reason for this variability is not known. It has been suggested that prion strains with unique self-replicating and neurotoxic properties emerge spontaneously in individuals carrying PrP mutations, dictating the phenotypic expression of disease. We generated transgenic mice expressing the FFI mutation, and found that they developed a fatal neurological illness highly reminiscent of FFI, and different from those of similarly generated mice modeling genetic CJD and GSS. Thus transgenic mice recapitulate the phenotypic differences seen in humans. The mutant PrPs expressed in these mice are misfolded but unable to self-replicate. They accumulate in different compartments of the neuronal secretory pathway, impairing the membrane delivery of ion channels essential for neuronal function. Our results indicate that conversion of mutant PrP into an infectious isoform is not required for pathogenesis, and suggest that the phenotypic variability may be due to different effects of mutant PrP on intracellular transport.  相似文献   
68.
Cannabinoids were shown to induce apoptosis of glioma cells in vitro and tumor regression in vivo, but mechanisms of their antiproliferative action remain elusive. In the present studies, C6 cells were exposed to a synthetic cannabinoid, WIN 55,212-2, which produced down-regulation of the Akt and Erk signalling pathways prior to appearance of any sign of apoptosis. We hypothesized that cannabinoid-induced cell death may be mediated by a Bcl-2 family member--Bad, whose function is hampered by these kinases due to control of its phosphorylation state. Using Western blot analysis, we found that levels of phosphorylated Bad, but not total Bad protein, decreased under exposure to WIN 55,212-2. WIN 55,212-2 treatment further resulted in mitochondrial depolarization and activation of caspase cascade. Thus, we suggest that the increase of proapoptotic Bad activity is an important link between the inhibition of survival pathways and an onset of execution phase of cannabinoid-induced glioma cell death.  相似文献   
69.
Toll like receptor 4 (TLR4) has been characterized for its ability to recognize bacterial endotoxin lipopolysaccharide (LPS). Considering that infections or inflammatory processes might contribute to the progression of pituitary tumors, we analyzed the TLR4 functional role by evaluating the LPS effect on lactotroph proliferation in primary cultures from experimental pituitary tumors, and examined the involvement of PI3K-Akt and NF-κB activation in this effect. In addition, the role of 17β-estradiol as a possible modulator of LPS-induced PRL cell proliferation was further investigated. In estrogen-induced hyperplasic pituitaries, LPS triggered lactotroph cell proliferation. However, endotoxin failed to increase the number of lactotrophs taking up BrdU in normal pituitaries. Moreover, incubation with anti-TLR4 antibody significantly reduced LPS-induced lactotroph proliferation, suggesting a functional role of this receptor. As a sign of TLR4 activation, an LPS challenge increased IL-6 release in normal and tumoral cells. By flow cytometry, TLR4 baseline expression was revealed at the plasma membrane of tumoral lactotrophs, without changes noted in the percentage of double PRL/TLR4 positive cells after LPS stimulus. Increases in TLR4 intracellular expression were detected as well as rises in CD14, p-Akt and NF-κB after an LPS challenge, as assessed by western blotting. The TLR4/PRL and PRL/NF-κB co-localization was also corroborated by immunofluorescence and the involvement of PI3K/Akt signaling in lactotroph proliferation and IL-6 release was revealed through the PI3K inhibitor Ly-294002. In addition, 17β-estradiol attenuated the LPS-evoked increase in tumoral lactotroph proliferation and IL-6 release. Collectively these results demonstrate the presence of functional TLR4 in lactotrophs from estrogen-induced hyperplasic pituitaries, which responded to the proliferative stimulation and IL-6 release induced by LPS through TLR4/CD14, with a contribution of the PI3K-Akt and NF-κB signaling pathways.  相似文献   
70.
Data‐driven materials discovery has become increasingly important in identifying materials that exhibit specific, desirable properties from a vast chemical search space. Synergic prediction and experimental validation are needed to accelerate scientific advances related to critical societal applications. A design‐to‐device study that uses high‐throughput screens with algorithmic encodings of structure–property relationships is reported to identify new materials with panchromatic optical absorption, whose photovoltaic device applications are then experimentally verified. The data‐mining methods source 9431 dye candidates, which are auto‐generated from the literature using a custom text‐mining tool. These candidates are sifted via a data‐mining workflow that is tailored to identify optimal combinations of organic dyes that have complementary optical absorption properties such that they can harvest all available sunlight when acting as co‐sensitizers for dye‐sensitized solar cells (DSSCs). Six promising dye combinations are shortlisted for device testing, whereupon one dye combination yields co‐sensitized DSSCs with power conversion efficiencies comparable to those of the high‐performance, organometallic dye, N719. These results demonstrate how data‐driven molecular engineering can accelerate materials discovery for panchromatic photovoltaic or other applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号