首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1246篇
  免费   83篇
  国内免费   1篇
  1330篇
  2023年   6篇
  2022年   13篇
  2021年   35篇
  2020年   29篇
  2019年   29篇
  2018年   38篇
  2017年   47篇
  2016年   24篇
  2015年   62篇
  2014年   65篇
  2013年   101篇
  2012年   109篇
  2011年   99篇
  2010年   60篇
  2009年   55篇
  2008年   85篇
  2007年   67篇
  2006年   63篇
  2005年   64篇
  2004年   59篇
  2003年   55篇
  2002年   49篇
  2001年   9篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1975年   1篇
  1974年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1962年   1篇
排序方式: 共有1330条查询结果,搜索用时 15 毫秒
31.

Background

Eosinophils are involved in various inflammatory processes including allergic inflammation during which angiogenesis has been documented. Angiogenesis is most likely connected to the hypoxia which characterizes inflamed tissues. Eosinophils produce VEGF and are pro-angiogenic. However, to the best of our knowledge no study has been performed to verify the existence of a direct link between eosinophils, hypoxia and angiogenesis in allergic inflammation.

Objective

To characterize eosinophil function and angiogenic potential under hypoxic conditions.

Methods

Human peripheral blood eosinophils were cultured in normoxic or hypoxic conditions with or without cytokines. Viability and apoptosis were assessed by Annexin V/PI staining. Anti- or pro-apoptotic protein levels, HIF-1α levels and MAPK phosphorylation were analyzed by immunoblot analysis. Angiogenic mediator release was evaluated by ELISA.

Results

Hypoxic eosinophils were more viable than normoxic ones after up to three days. In addition in hypoxia, anti-apoptotic Bcl-XL protein levels increased more than pro-apoptotic Bax levels. Hypoxia increased VEGF and IL-8 release. In hypoxic eosinophils high levels of HIF-1α were observed, particularly in the presence of GM-CSF. MAPK, particularly ERK1/2 inhibitors, decreased hypoxia-mediated VEGF release and HIF-1α expression.

Conclusion

Eosinophils respond to hypoxia by up-regulation of survival and of some of their pro-angiogenic functions indicating a correlation between eosinophilic inflammation and angiogenesis.  相似文献   
32.
Molecular mechanisms of neurotrophin signaling on dendrite development and dynamics are only partly understood. To address the role of brain‐derived neurotrophic factor (BDNF) in the morphogenesis of GABAergic neurons of the main olfactory bulb, we analyzed mice lacking BDNF, mice carrying neurotrophin‐3 (NT3) in the place of BDNF, and TrkB signaling mutant mice with a receptor that can activate phospholipase Cγ (PLCγ) but is unable to recruit the adaptors Shc/Frs2. BDNF deletion yielded a compressed olfactory bulb with a significant loss of parvalbumin (PV) immunoreactivity in GABAergic interneurons of the external plexiform layer. Dendrite development of PV‐positive interneurons was selectively attenuated by BDNF since other Ca2+‐binding protein‐containing neuron populations appeared unaffected. The deficit in PV‐positive neurons could be rescued by the NT3/NT3 alleles. The degree of PV immunoreactivity was dependent on BDNF and TrkB recruitment of the adaptor proteins Shc/Frs2. In contrast, PLCγ signaling from the TrkB receptor was sufficient for dendrite growth in vivo and consistently, blocking PLCγ prevented BDNF‐dependent dendrite development in vitro. Collectively, our results provide genetic evidence that BDNF and TrkB signaling selectively regulate PV expression and dendrite growth in a subset of neurochemically‐defined GABAergic interneurons via activation of the PLCγ pathway. © 2006 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   
33.
34.
Autoreactive B cells are activated by DNA, chromatin, or chromatin-containing immune complexes (ICs) through a mechanism dependent on dual engagement of the BCR and TLR9. We examined the contribution of endogenous DNA sequence elements to this process. DNA sequence can determine both recognition by the BCR and by TLR9. DNA fragments containing CpG islands, a natural source of unmethylated CpG dinucleotides, promote the activation of DNA-reactive B cells derived from BCR transgenic mice as well as DNA-reactive B cells present in the normal repertoire. ICs containing these CpG island fragments are potent ligands for AM14 IgG2a-reactive B cells. In contrast, ICs containing total mammalian DNA, or DNA fragments lacking immunostimulatory motifs, fail to induce B cell proliferation, indicating that BCR crosslinking alone is insufficient to activate low-affinity autoreactive B cells. Importantly, priming B cells with IFN-alpha lowers the BCR activation threshold and relaxes the selectivity for CpG-containing DNA. Taken together, our findings underscore the importance of endogenous CpG-containing DNAs in the TLR9-dependent activation of autoreactive B cells and further identify an important mechanism through which IFN-alpha can contribute to the pathogenesis of systemic lupus erythematosus.  相似文献   
35.
Highlights? Cardiac laterality involves Nodal modulating an antimotogenic Bmp activity ? The Nodal target Hyaluronan synthase 2 unilaterally dampens Bmp signaling activity ? Nonmuscle myosin II is positively regulated by Bmp within cardiac tissue ? High levels of nonmuscle myosin II activity reduce cardiac cell motility  相似文献   
36.
Eukaryotic cells are partitioned into functionally distinct self-organizing compartments. But while the biogenesis of membrane-surrounded compartments is beginning to be understood, the organizing principles behind large membrane-less structures, such as RNA-containing granules, remain a mystery. Here, we argue that protein disorder is an essential ingredient for the formation of such macromolecular collectives. Intrinsically disordered regions (IDRs) do not fold into a well-defined structure but rather sample a range of conformational states, depending on the local conditions. In addition to being structurally versatile, IDRs promote multivalent and transient interactions. This unique combination of features turns intrinsically disordered proteins into ideal agents to orchestrate the formation of large macromolecular assemblies. The presence of conformationally flexible regions, however, comes at a cost, for many intrinsically disordered proteins are aggregation-prone and cause protein misfolding diseases. This association with disease is particularly strong for IDRs with prion-like amino acid composition. Here, we examine how disease-causing and normal conformations are linked, and discuss the possibility that the dynamic order of the cytoplasm emerges, at least in part, from the collective properties of intrinsically disordered prion-like domains. This article is part of a Special Issue entitled: The emerging dynamic view of proteins: Protein plasticity in allostery, evolution and self-assembly.  相似文献   
37.
Aurora family serine/threonine kinases control mitotic progression, and their deregulation is implicated in tumorigenesis. Aurora A and Aurora B, the best-characterized members of mammalian Aurora kinases, are approximately 60% identical but bind to unrelated activating subunits. The structure of the complex of Aurora A with the TPX2 activator has been reported previously. Here, we report the crystal structure of Aurora B in complex with the IN-box segment of the inner centromere protein (INCENP) activator and with the small molecule inhibitor Hesperadin. The Aurora B:INCENP complex is remarkably different from the Aurora A:TPX2 complex. INCENP forms a crown around the small lobe of Aurora B and induces the active conformation of the T loop allosterically. The structure represents an intermediate state of activation of Aurora B in which the Aurora B C-terminal segment stabilizes an open conformation of the catalytic cleft, and a critical ion pair in the kinase active site is impaired. Phosphorylation of two serines in the carboxyl terminus of INCENP generates the fully active kinase.  相似文献   
38.
Phytoplankton exhibit a diversity of morphologies, nutritional values, and potential chemical defenses that could affect the feeding and fitness of zooplankton consumers. However, how phytoplankton traits shape plant–herbivore interactions in the marine plankton is not as well understood as for terrestrial or marine macrophytes and their grazers. The occurrence of blooms of marine dinoflagellates such as Karenia brevis suggests that, for uncertain reasons, grazers are unable to capitalize on, or control, this phytoplankton growth—making these systems appealing for testing mechanisms of grazing deterrence. Using the sympatric copepod Acartia tonsa, we conducted a mixed diet feeding experiment to test whether K. brevis is beneficial, toxic, nutritionally inadequate, or behaviorally rejected as food relative to the palatable and nutritionally adequate phytoplankter Rhodomonas lens. On diets rich in K. brevis, copepods experienced decreased survivorship and decreased egg production per female, but the percentage of eggs that hatched was unaffected. Although copepods showed a 6–17% preference for R. lens over K. brevis on some mixed diets, overall high ingestion rates eliminated the possibility that reduced copepod fitness was caused by copepods avoiding K. brevis, leaving nutritional inadequacy and toxicity as remaining hypotheses. Because egg production was dependent on the amount of R. lens consumed regardless of the amount of K. brevis eaten, there was no evidence that fitness costs were caused by K. brevis toxicity. Copepods limited to K. brevis ate 480% as much as those fed only R. lens, suggesting that copepods attempted to compensate for low food quality with increased quantity ingested. Our results indicate that K. brevis is a poor food for A. tonsa, probably due to nutritional inadequacy rather than toxicity, which could affect bloom dynamics in the Gulf of Mexico where these species co-occur.  相似文献   
39.
The relationships among hippocampal neurogenesis, depression and the mechanism of action of antidepressant drugs have generated a considerable amount of controversy. The cyclin-dependent kinase (Cdk) inhibitor p21(Cip1) (p21) plays a crucial role in restraining cellular proliferation and maintaining cellular quiescence. Using in vivo and in vitro approaches the present study shows that p21 is expressed in the subgranular zone of the dentate gyrus of the hippocampus in early neuronal progenitors and in immature neurons, but not in mature neurons or astroglia. In vitro, proliferation is higher in neuronal progenitor cells derived from p21-/- mice compared to cells derived from wild-type mice. Proliferation is increased in neuronal progenitor cells after suppression of p21 using lentivirus expressing short hairpin RNA against p21. In vivo, chronic treatment with the non-selective antidepressant imipramine as well as the norepinephrine-selective reuptake inhibitor desipramine or the serotonin-selective reuptake inhibitor fluoxetine all decrease p21 expression, and this was associated with increased neurogenesis. Chronic antidepressant treatment did not affect the expression of other Cdk inhibitors. Untreated p21-/- mice exhibit a higher degree of baseline neurogenesis and decreased immobility in the forced swim test. Although chronic imipramine treatment increased neurogenesis and reduced immobility in the forced swim test in wild-type mice, it reduced neurogenesis and increased immobility in p21-/- mice. These results demonstrate the unique role of p21 in the control of neurogenesis, and support the hypothesis that different classes of reuptake inhibitor-type antidepressant drugs all stimulate hippocampal neurogenesis by inhibiting p21 expression.  相似文献   
40.
Release factors RF1 and RF2 recognize stop codons present at the A-site of the ribosome and activate hydrolysis of peptidyl-tRNA to release the peptide chain. Interactions with RF3, a ribosome-dependent GTPase, then initiate a series of reactions that accelerate the dissociation of RF1 or RF2 and their recycling between ribosomes. Two regions of Escherichia coli RF1 and RF2 were identified previously as involved in stop codon recognition and peptidyl-tRNA hydrolysis. We show here that removing the N-terminal domain of RF1 or RF2 or exchanging this domain between the two factors does not affect RF specificity but has different effects on the activity of RF1 and RF2: truncated RF1 remains highly active and able to support rapid cell growth, whereas cells with truncated RF2 grow only poorly. Transplanting a loop of 13 amino acid residues from RF2 to RF1 switches the stop codon specificity. The interaction of the truncated factors with RF3 on the ribosome is defective: they fail to stimulate guanine nucleotide exchange on RF3, recycling is not stimulated by RF3, and nucleotide-free RF3 fails to stabilize the binding of RF1 or RF2 to the ribosome. However, the N-terminal domain seems not to be required for the expulsion of RF1 or RF2 by RF3:GTP.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号