首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1241篇
  免费   83篇
  国内免费   1篇
  2023年   5篇
  2022年   8篇
  2021年   35篇
  2020年   29篇
  2019年   29篇
  2018年   38篇
  2017年   47篇
  2016年   24篇
  2015年   62篇
  2014年   65篇
  2013年   102篇
  2012年   109篇
  2011年   99篇
  2010年   60篇
  2009年   55篇
  2008年   85篇
  2007年   67篇
  2006年   63篇
  2005年   64篇
  2004年   59篇
  2003年   55篇
  2002年   49篇
  2001年   9篇
  2000年   5篇
  1999年   4篇
  1998年   6篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   5篇
  1989年   4篇
  1987年   2篇
  1986年   2篇
  1985年   5篇
  1984年   5篇
  1983年   5篇
  1982年   3篇
  1981年   6篇
  1980年   3篇
  1979年   4篇
  1975年   1篇
  1974年   3篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
  1967年   2篇
  1962年   1篇
排序方式: 共有1325条查询结果,搜索用时 3 毫秒
11.
Hereditary nonpolyposis colorectal cancer (HNPCC) is a relatively common autosomal dominant cancer-susceptibility condition. The recent isolation of the DNA mismatch repair genes (hMSH2, hMLH1, hPMS1, and hPMS2) responsible for HNPCC has allowed the search for germ-line mutations in affected individuals. In this study we used denaturing gradient-gel electrophoresis to screen for mutations in the hMSH2 gene. Analysis of all the 16 exons of hMSH2, in 34 unrelated HNPCC kindreds, has revealed seven novel pathogenic germ-line mutations resulting in stop codons either directly or through frameshifts. Additionally, nucleotide substitutions giving rise to one missense, two silent, and one useful polymorphism have been identified. The proportion of families in which hMSH2 mutations were found is 21%. Although the spectrum of mutations spread at the hMSH2 gene among HNPCC patients appears extremely heterogeneous, we were not able to establish any correlation between the site of the individual mutations and the corresponding tumor spectrum. Our results indicate that, given the genomic size and organization of the hMSH2 gene and the heterogeneity of its mutation spectrum, a rapid and efficient mutation detection procedure is necessary for routine molecular diagnosis and presymptomatic detection of the disease in a clinical setup.  相似文献   
12.
Ethidium bromide in a concentration of 200 μg/ml causes a full inhibition of RNA synthesis in aSaccharomyces cerevisiae ρ° strain, while protein synthesis continues at a reduced rate. Under these conditions, processing of rRNA is slowed down and part of the 37S rRNA precursor molecules are cleaved to a 32S RNA fraction (molecular weight 2.15×106). The 32S RNA accumulates in cells treated with ethidium bromide but cannot be processed to mature 25S and 18S rRNA and is degraded. The 32S RNA fraction also appears when processing of rRNA occurs in cells starved for required amino acids. The degradation of 37S precursor molecules through 32S RNA may be a regulatory mechanism of rRNA biosynthesis in yeast, which operates when excess rRNA must be wasted.  相似文献   
13.
Genetic diversity provides populations with the possibility to persist in ever-changing environments, where selective regimes change over time. Therefore, the long-term survival of a population may be affected by its level of genetic diversity. The Mexican howler monkey (Alouatta palliata mexicana) is a critically endangered primate restricted to southeast Mexico. Here, we evaluate the genetic diversity and population structure of this subspecies based on 83 individuals from 31 groups sampled across the distribution range of the subspecies, using 29 microsatellite loci. Our results revealed extremely low genetic diversity (HO = 0.21, HE = 0.29) compared to studies of other A. palliata populations and to other Alouatta species. Principal component analysis, a Bayesian clustering method, and analyses of molecular variance did not detect strong signatures of genetic differentiation among geographic populations of this subspecies. Although we detect small but significant FST values between populations, they can be explained by a pattern of isolation by distance. These results and the presence of unique alleles in different populations highlight the importance of implementing conservation efforts in multiple populations across the distribution range of A. p. mexicana to preserve its already low genetic diversity. This is especially important given current levels of population isolation due to the extreme habitat fragmentation across the distribution range of this primate.  相似文献   
14.
15.
Apoptosis‐inducing protein of 56 kDa (AIP56) is a major virulence factor of Photobacterium damselae subsp. piscicida, a gram‐negative pathogen that infects warm water fish species worldwide and causes serious economic losses in aquacultures. AIP56 is a single‐chain AB toxin composed by two domains connected by an unstructured linker peptide flanked by two cysteine residues that form a disulphide bond. The A domain comprises a zinc‐metalloprotease moiety that cleaves the NF‐kB p65, and the B domain is involved in binding and internalisation of the toxin into susceptible cells. Previous experiments suggested that disruption of AIP56 disulphide bond partially compromised toxicity, but conclusive evidences supporting the importance of that bond in intoxication were lacking. Here, we show that although the disulphide bond of AIP56 is dispensable for receptor recognition, endocytosis, and membrane interaction, it needs to be intact for efficient translocation of the toxin into the cytosol. We also show that the host cell thioredoxin reductase‐thioredoxin system is involved in AIP56 intoxication by reducing the disulphide bond of the toxin at the cytosol. The present study contributes to a better understanding of the molecular mechanisms operating during AIP56 intoxication and reveals common features shared with other AB toxins.  相似文献   
16.
17.
18.
Changes in behaviour may initiate shifts to new adaptive zones, with physical adaptations for novel environments evolving later. While new mutations are commonly considered engines of adaptive change, sensory evolution enabling access to new resources might also arise from standing genetic diversity, and even gene loss. We examine the relative contribution of molecular adaptations, measured by positive and relaxed selection, acting on eye‐expressed genes associated with shifts to new adaptive zones in ecologically diverse bats from the superfamily Noctilionoidea. Collectively, noctilionoids display remarkable ecological breadth, from highly divergent echolocation to flight strategies linked to specialized insectivory, the parallel evolution of diverse plant‐based diets (e.g., nectar, pollen and fruit) from ancestral insectivory, and—unusually for echolocating bats—often have large, well‐developed eyes. We report contrasting levels of positive selection in genes associated with the development, maintenance and scope of visual function, tracing back to the origins of noctilionoids and Phyllostomidae (the bat family with most dietary diversity), instead of during shifts to novel diets. Generalized plant visiting was not associated with exceptional molecular adaptation, and exploration of these novel niches took place in an ancestral phyllostomid genetic background. In contrast, evidence for positive selection in vision genes was found at subsequent shifts to either nectarivory or frugivory. Thus, neotropical noctilionoids that use visual cues for identifying food and roosts, as well as for orientation, were effectively preadapted, with subsequent molecular adaptations in nectar‐feeding lineages and the subfamily Stenodermatinae of fig‐eating bats fine‐tuning pre‐existing visual adaptations for specialized purposes.  相似文献   
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号