首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13166篇
  免费   1095篇
  国内免费   1893篇
  16154篇
  2024年   68篇
  2023年   257篇
  2022年   552篇
  2021年   849篇
  2020年   608篇
  2019年   730篇
  2018年   592篇
  2017年   482篇
  2016年   651篇
  2015年   929篇
  2014年   1061篇
  2013年   1073篇
  2012年   1300篇
  2011年   1119篇
  2010年   683篇
  2009年   591篇
  2008年   703篇
  2007年   526篇
  2006年   508篇
  2005年   436篇
  2004年   420篇
  2003年   313篇
  2002年   284篇
  2001年   211篇
  2000年   188篇
  1999年   172篇
  1998年   128篇
  1997年   105篇
  1996年   76篇
  1995年   96篇
  1994年   65篇
  1993年   53篇
  1992年   52篇
  1991年   43篇
  1990年   40篇
  1989年   48篇
  1988年   26篇
  1987年   22篇
  1986年   17篇
  1985年   20篇
  1984年   14篇
  1983年   16篇
  1982年   8篇
  1981年   4篇
  1975年   4篇
  1974年   2篇
  1973年   6篇
  1953年   1篇
  1950年   2篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
Increased expression and activity of cardiac and circulating cathepsin D and soluble fms‐like tyrosine kinase‐1 (sFlt‐1) have been demonstrated to induce and promote peripartum cardiomyopathy (PPCM) via promoting cleavage of 23‐kD prolactin (PRL) to 16‐kD PRL and neutralizing vascular endothelial growth factor (VEGF), respectively. We hypothesized that activation of Hes1 is proposed to suppress cathepsin D via activating Stat3, leading to alleviated development of PPCM. In the present study, we aimed to investigate the role of Notch1/Hes1 pathway in PPCM. Pregnant mice between prenatal 3 days and postpartum 3 weeks were fed with LY‐411575 (a notch inhibitor, 10 mg/kg/d). Ventricular function and pathology were evaluated by echocardiography and histological analysis. Western blotting analysis was used to examine the expression at the protein level. The results found that inhibition of Notch1 significantly promoted postpartum ventricular dilatation, myocardial hypertrophy and myocardial interstitial fibrosis and suppressed myocardial angiogenesis. Western blotting analysis showed that inhibition of Notch1 markedly increased cathepsin D and sFlt‐1, reduced Hes1, phosphorylated Stat3 (p‐Stat3), VEGFA and PDGFB, and promoted cleavage of 23k‐D PRL to 16‐kD PRL. Collectively, inhibition of Notch1/Hes1 pathway induced and promoted PPCM via increasing the expressions of cathepsin D and sFlt‐1. Notch1/Hes1 was a promising target for prevention and therapeutic regimen of PPCM.  相似文献   
103.
International Journal of Peptide Research and Therapeutics - Immunotoxins are chimeric proteins that combine antibodies and toxins in targeted cancer therapy. Despite the promising application...  相似文献   
104.
105.
Formononetin is a natural isoflavone compound found mainly in Chinese herbal medicines such as astragalus and red clover. It is considered to be a typical phytooestrogen. In our previous experiments, it was found that formononetin has a two‐way regulatory effect on endothelial cells (ECs): low concentrations promote the proliferation of ECs and high concentrations have an inhibitory effect. To find a specific mechanism of action and provide a better clinical effect, we performed a structural transformation of formononetin and selected better medicinal properties for formononetin modifier J1 and J2 from a variety of modified constructs. The MTT assay measured the effects of drugs on human umbilical vein endothelial cell (HUVEC) activity. Scratch and transwell experiments validated the effects of the drugs on HUVEC migration and invasion. An in vivo assessment effect of the drugs on ovariectomized rats. Long‐chain non‐coding RNA for EWSAT1, which is abnormally highly expressed in HUVEC, was screened by gene chip, and the effect of the drug on its expression was detected by PCR after the drug was applied. The downstream factors and their pathways were analysed, and the changes in the protein levels after drug treatment were evaluated by Western blot. In conclusion, the mechanism of action of formononetin, J1 and J2 on ECs may be through EWSAT1‐TRAF6 and its downstream pathways.  相似文献   
106.
CircPRTM5 is associated with cell proliferation and migration in many kinds of malignancies. However, the functions and mechanisms of CircPRTM5 in CRC progression remain unclear. We explored the role and the mechanisms of CircPRTM5 in the development of CRC. Tissues of CRC patients and matched adjacent non-tumour tissues were collected to evaluate the expression of CircPRTM5. The expression of CircPRTM5 in CRC tissues was significantly higher than that in adjacent tissues. The biological functions of CircPRTM5 in CRC were determined by overexpression and down-regulation of CircPRTM5 in CRC cells in vitro and in vivo. The results indicate that knockdown of CircPRTM5 can significantly inhibit the proliferation of CRC cells. The potential mechanisms of CircPRTM5 in CRC development were identified by RT-qPCR, Western blotting analysis and luciferase reporter assay. CircPRTM5 competitively regulates the expression of E2F3 by capillary adsorption of miR-377. CircPRMT5 regulates CRC proliferation by regulating the expression of E2F3, which affects the expression of the cell cycle-associated proteins cyclinD1 and CDK2. CircPRTM5 exerts critical regulatory role in CRC progression by sponging miR-377 to induce E2F3 expression.  相似文献   
107.
Sepsis‐associated encephalopathy (SAE) has typically been associated with a poor prognosis. Although sestrin 2 (SESN2) plays a crucial role in metabolic regulation and the stress response, its expression and functional roles in SAE are still unclear. In the present study, SAE was established in mice through caecal ligation and puncture (CLP). The adeno‐associated virus 2 (AAV2)‐mediated SESN2 expression (ie overexpression and knockdown) system was injected into the hippocampi of mice with SAE, and subsequently followed by electron microscopic analysis, the Morris water maze task and pathological examination. Our results demonstrated an increase of SESN2 in the hippocampal neurons of mice with SAE, 2‐16 hours following CLP. AAV2‐mediated ectopic expression of SESN2 attenuated brain damage and loss of learning and memory functions in mice with SAE, and these effects were associated with lower pro‐inflammatory cytokines in the hippocampus. Mechanistically, SESN2 promoted unc‐51‐like kinase 1 (ULK1)‐dependent autophagy in hippocampal neurons through the activation of the AMPK/mTOR signalling pathway. Finally, AMPK inhibition by SBI‐0206965 blocked SESN2‐mediated attenuation of SAE in mice. In conclusion, our findings demonstrated that SESN2 might be a novel pharmacological intervention strategy for SAE treatment through promotion of ULK1‐dependent autophagy in hippocampal neurons.  相似文献   
108.
Myocardial infarction (MI) remains the leading cause of morbidity and mortality worldwide, and novel therapeutic targets still need to be investigated to alleviate myocardial injury and the ensuing maladaptive cardiac remodelling. Accumulating studies have indicated that lncRNA H19 might exert a crucial regulatory effect on cardiovascular disease. In this study, we aimed to explore the biological function and molecular mechanism of H19 in MI. To investigate the biological functions of H19, miRNA‐22‐3p and KDM3A, gain‐ and loss‐of‐function experiments were performed. In addition, bioinformatics analysis, dual‐luciferase reporter assays, RNA immunoprecipitation (RIP) assays, RNA pull‐down assays, quantitative RT‐PCR and Western blot analyses as well as rescue experiments were conducted to reveal an underlying competitive endogenous RNA (ceRNA) mechanism. We found that H19 was significantly down‐regulated after MI. Functionally, enforced H19 expression dramatically reduced infarct size, improved cardiac performance and alleviated cardiac fibrosis by mitigating myocardial apoptosis and decreasing inflammation. However, H19 knockdown resulted in the opposite effects. Bioinformatics analysis and dual‐luciferase assays revealed that, mechanistically, miR‐22‐3p was a direct target of H19, which was also confirmed by RIP and RNA pull‐down assays in primary cardiomyocytes. In addition, bioinformatics analysis and dual‐luciferase reporter assays also demonstrated that miRNA‐22‐3p directly targeted the KDM3A gene. Moreover, subsequent rescue experiments further verified that H19 regulated the expression of KDM3A to ameliorate MI‐induced myocardial injury in a miR‐22‐3p‐dependent manner. The present study revealed the critical role of the lncRNAH19/miR‐22‐3p/KDM3A pathway in MI. These findings suggest that H19 may act as a potential biomarker and therapeutic target for MI.  相似文献   
109.
A series of aryloxyethylamine derivatives were designed, synthesized and evaluated for their biological activity. Their structures were confirmed by 1H‐NMR, 13C‐NMR, FT‐IR and HR‐ESI‐MS. The preliminary screening of neuroprotection of compounds in vitro was detected by MTT, and the anti‐ischemic activity in vivo was tested using bilateral common carotid artery occlusion in mice. Most of these compounds showed potential neuroprotective effects against the glutamate‐induced cell death in differentiated rat pheochromocytoma cells (PC12 cells), especially for (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone, (4‐bromophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone, (4‐chlorophenyl)(1‐{2‐[(naphthalen‐2‐yl)oxy]ethyl}piperidin‐4‐yl)methanone, (4‐chlorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone and {1‐[2‐(4‐bromophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone, which exhibited potent protection of PC12 cells at three doses (0.1, 1.0, 10 μM). Compounds (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, (4‐fluorophenyl){1‐[2‐(naphthalen‐2‐yloxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone and {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone possessed the significant prolongation of the survival time of mice subjected to acute cerebral ischemia and decreased the mortality rate at all five doses tested (200, 100, 50, 25, 12.5 mg/kg) and had significant neuroprotective activity. In addition, (4‐fluorophenyl){1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}methanone, {1‐[2‐(4‐methoxyphenoxy)ethyl]piperidin‐4‐yl}(4‐methoxyphenyl)methanone and {1‐[2‐(4‐chlorophenoxy)ethyl]piperidin‐4‐yl}(4‐chlorophenyl)methanone possessed outstanding neuroprotection in vitro and in vivo. These compounds can be used as a promising neuroprotective agents for future development of new anti‐ischemic stroke agents. Basic structure–activity relationships are also presented.  相似文献   
110.
The relatively low capacity and capacity fade of spinel LiMn2O4 (LMO) limit its application as a cathode material for lithium‐ion batteries. Extending the potential window of LMO below 3 V to access double capacity would be fantastic but hard to be realized, as it will lead to fast capacity loss due to the serious Jahn–Teller distortion. Here using experiments combined with extensive ab initio calculations, it is proved that there is a cooperative effect among individual Jahn–Teller distortions of Mn3+O6 octahedrons in LMO, named as cooperative Jahn–Teller distortion (CJTD) in the text, which is the difficulty to access the capacity beyond one lithium intercalation. It is further proposed that the cationic disordering (excess Li at Mn sites and Li/Mn exchange) can intrinsically suppress the CJTD of Mn3+O6 octahedrons. The cationic disordering can break the symmetry of Mn3+ arrangements to disrupt the correlation of distortions arising from individual JT centers and prevent the Mn3+? O bonds distorting along one direction. Interestingly, with the suppressed CJTD, the original octahedral vacancies in spinel LMO are activated and can serve as extra Li‐ion storage sites to access the double capacity with good reversible cycling stability in microsized LMO.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号