首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2082篇
  免费   169篇
  国内免费   301篇
  2024年   13篇
  2023年   41篇
  2022年   80篇
  2021年   162篇
  2020年   91篇
  2019年   108篇
  2018年   94篇
  2017年   90篇
  2016年   134篇
  2015年   190篇
  2014年   186篇
  2013年   199篇
  2012年   221篇
  2011年   186篇
  2010年   131篇
  2009年   88篇
  2008年   94篇
  2007年   69篇
  2006年   71篇
  2005年   50篇
  2004年   58篇
  2003年   42篇
  2002年   28篇
  2001年   10篇
  2000年   17篇
  1999年   19篇
  1998年   13篇
  1997年   13篇
  1996年   8篇
  1995年   7篇
  1994年   6篇
  1993年   3篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
  1975年   4篇
  1974年   2篇
  1973年   6篇
  1953年   1篇
排序方式: 共有2552条查询结果,搜索用时 15 毫秒
151.
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.  相似文献   
152.
Microgravity is a major stress factor that astronauts have to face in space. In the past, the effects of microgravity on genomic DNA damage were studied, and it seems that the effect on genomic DNA depends on cell types and the length of exposure time to microgravity or simulated microgravity (SMG). In this study we used mouse embryonic stem (MES) and mouse embryonic fibroblast (MEF) cells to assess the effects of SMG on DNA lesions. To acquire the insight into potential mechanisms by which cells resist and/or adapt to SMG, we also included Rad9-deleted MES and Mdc1-deleted MEF cells in addition to wild type cells in this study. We observed significant SMG-induced DNA double strand breaks (DSBs) in Rad9 -/- MES and Mdc1 -/- MEF cells but not in their corresponding wild type cells. A similar pattern of DNA single strand break or modifications was also observed in Rad9 -/- MES. As the exposure to SMG was prolonged, Rad9 -/- MES cells adapted to the SMG disturbance by reducing the induced DNA lesions. The induced DNA lesions in Rad9 -/- MES were due to SMG-induced reactive oxygen species (ROS). Interestingly, Mdc1 -/- MEF cells were only partially adapted to the SMG disturbance. That is, the induced DNA lesions were reduced over time, but did not return to the control level while ROS returned to a control level. In addition, ROS was only partially responsible for the induced DNA lesions in Mdc1 -/- MEF cells. Taken together, these data suggest that SMG is a weak genomic DNA stress and can aggravate genomic instability in cells with DNA damage response (DDR) defects.  相似文献   
153.
The aim of this study was to investigate the effects of choline supplementation on intramuscular fat (IMF) and lipid oxidation in IUGR pigs. Twelve normal body weight (NBW) and twelve intrauterine growth retardation (IUGR) newborn piglets were collected and distributed into 4 treatments (Normal: N, Normal+Choline: N+C, IUGR: I, and IUGR+Choline: I+C) with 6 piglets in each treatment. At 23 d of age, NBW and IUGR pigs were fed basal or choline supplemented diets. The results showed that the IUGR pigs had significantly lower (P<0.05) BW as compared with the NBW pigs at 23 d, 73 d, and 120 d of age, however, there was a slight decreased (P>0.05) in BW of IUGR pigs than the NBW pigs at 200 d. Compared with the NBW pigs, pH of meat longissimus dorsi muscle was significantly lower (P<0.05), and the meat color was improved in IUGR pigs. The malondialdehyde (MDA) levels were significantly decreased (P<0.05), while triglyceride (TG) and IMF contents were significantly higher (P<0.05) in the IUGR pigs than the NBW pigs. IUGR up-regulated the mRNA gene expression of fatty acid synthetase (FAS) and acetyl-CoA carboxylase (ACC). Dietary choline significantly increased (P<0.05) the BW at 120d of age, however, significantly decreased (P<0.05) the TG and IMF contents in both IUGR and NBW pigs. FAS and sterol regulatory element-binding proteins 1 (SREBP1) mRNA gene expressions were increased (P<0.05) while the muscle-carnitine palmityl transferase (M-CPT) and peroxisome proliferators-activated receptorγ (PPARγ) mRNA (P<0.05) gene expressions were decreased in the muscles of the IUGR pigs by choline supplementation. Furthermore, choline supplementation significantly increased (P<0.05) the MDA content as well as the O2•¯ scavenging activity in meat of IUGR pigs. The results suggested that IUGR pigs showed a permanent stunting effect on the growth performance, increased fat deposition and oxidative stress in muscles. However, dietary supplementation of choline improved the fat deposition via enhancing the lipogenesis and reducing the lipolysis.  相似文献   
154.
155.

Background

Non-small cell lung cancer (NSCLC) is a leading cause of cancer death worldwide. Early diagnosis is essential for improvements of prognosis and survival of the patients. Currently, there is no effective biomarker available in clinical settings for early detection of lung cancer. Altered expressions in many cancer types including NSCLC and stable existence in plasma make microRNAs (miRNAs) a group of potentially useful biomarkers for clinical assessments of patients with NSCLC.

Objectives

To evaluate the potential values of miRNAs as blood-based biomarkers for early diagnosis and prognosis in NSCLC patients.

Methods

Peripheral blood samples from healthy volunteers and early-staged NSCLC patients before and after surgery were collected, and plasma was separated. Expression of ten miRNAs in the plasma and tumor sections of the patients was detected by quantitative real-time polymerase chain reaction.

Results

MiRNA (miR)-486 and miR-150 were found to significantly distinguish lung cancer patients from healthy volunteers. Area under curve of miR-486 and miR-150 were 0.926 (sensitivity, 0.909; specificity, 0.818) and 0.752 (sensitivity, 0.818; specificity, 0.818), respectively. In response to therapy, patients with down-regulated miR-486 expression showed prolonged recurrence-free survival than those with un-reduced miR-486 expression (median, unreached vs. 19 months; hazard ratio, 0.1053; 95% confidence interval, 0.01045 to 1.060; P=0.056).

Conclusions

The results suggest that miR-486 and miR-150 could be potential blood-based biomarkers for early diagnosis of NSCLC. Monitoring change of miR-486 expression in plasma might be an effective and non-invasive method for recurrence prediction of early-staged NSCLC patients.  相似文献   
156.
Highly sensitive detection of hepatitis C virus (HCV) in serum is a key method for diagnosing and classifying the extent of HCV infection. In this study, a p‐phenol derivative, 4‐(1,2,4‐triazol‐1‐yl)phenol (4‐TRP), was employed as an efficient enhancer of the luminol–hydrogen peroxide (H2O2)–horseradish peroxidase (HRP) chemiluminescence (CL) system for detection of HCV. Compared with a traditional enhancer, 4‐TRP strongly enhanced CL intensity with the effect of prolonging and stabilizing light emission. The developed CL system was applied to detecting HCV core antigen (HCV‐cAg) using a sandwich structure inside microwells. Our experimental results showed that there was good linear relationship between CL intensity and HCV‐cAg concentration in the 0.6–3.6 pg/mL range (R = 0.99). The intra‐ and inter‐assay coefficients of variation were 4.5–5.8% and 5.0–7.3%, respectively. In addition, sensitive determination of HCV‐cAg in serum samples using the luminol–H2O2–HRP–4‐TRP CL system was also feasible in clinical settings. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
157.
In this work, fluorescent carbon dots (CDs) were synthesized using a hydrothermal method with glucose as the carbon source and were surface‐modified with ethylenediamine. The properties of as‐prepared CDs were analyzed by transmission electron microscopy (TEM), Fourier transform infrared (FTIR), ultraviolet–visible light (UV/vis) absorption and fluorescent spectra. Furthermore, CDs conjugated with mouse anti‐(human carcinoembryonic antigen) (CEA) monoclonal antibody were successful employed in the biolabeling and fluorescent imaging of human gastric carcinoma cells. In addition, the cytotoxicity of CDs was also tested using human gastric carcinoma cells. There was no apparent cytotoxicity on human gastric carcinoma cells. These results suggest the potential application of the as‐prepared CDs in bioimaging and related fields. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
158.
159.
The aim of this study was to investigate the effects of hypoxia-inducible factor-1α (HIF-1α) on the proliferation, migration and invasion of neuroblastoma (NB) cells and the mechanisms involved. We here initially used the real-time polymerase chain reaction (real-time PCR), Western blotting and immunohistochemistry (IHC) to detect the expression of HIF-1α and components of the sonic hedgehog (SHH) signaling pathway in NB cells and human specimens. Subsequently, cell proliferation, migration and invasion were analyzed using the cell counting assay, wound healing assay and Transwell system in two types of human NB cell lines, SH-SY5Y and IMR32. In addition, the role of HIF-1α in NB cells growth was determined in a xenograft nude mouse model. We found that the level of HIF-1α was significantly upregulated during NB progression and was associated with the expression of two components of SHH signaling, SHH and GLI1. We next indicated that the proliferation, migration and invasiveness of SH-SY5Y and IMR32 cells were significantly inhibited by HIF-1α knockdown, which was mediated by small interfering RNAs (siRNAs) targeting against its mRNA. Furthermore, the growth of NB cells in vivo was also suppressed by HIF-1α inhibition. Finally, the pro-migration and proliferative effects of HIF-1α could be reversed by disrupting SHH signaling. In conclusion, our results demonstrated that upregulation of HIF-1α in NB promotes proliferation, migration and invasiveness via SHH signaling.  相似文献   
160.

Objective

We aimed to measure prevalence of sleep disturbance in patients with differentiated thyroid cancer (DTC) by calculating Pittsburgh Sleep Quality Index (PSQI), and compare these data with patients with benign thyroid nodules or normal participants.

Methods

Three groups of patients participated in this cross-sectional study. In the first group, 162 patients with DTC received total thyroidectomy, and then 131I therapy. The second group consisted of 84 patients with benign thyroid nodules, who received partial thyroidectomy. The third group was 78 normal healthy control cases. PSQI was used to assess the sleep quality. Inter-group differences were analyzed by Kruskal-Wallis test or independent samples T test. χ2 test was also used to check prevalence differences of poor sleep quality among the groups. Differences of PSQI score and poor sleep quality prevalence before and after 131I therapy in the same group of DTC participants were analyzed by paired T test and Mcnemar''s test.

Results

Higher PSQI score (7.59 ± 4.21) and higher rate of poor sleep quality (54.32%) were shown in DTC patients than in any other group. After 131I therapy, PSQI score and prevalence of poor sleep quality in DTC patients increased significantly to 8.78 ± 4.72 and 70.99%. Then DTC patients were divided into two subgroups based on their metastatic status. DTC patients with metastasis (87/162 cases, 53.70%) had significantly higher PSQI score (10.87 ± 5.18) and higher prevalence of poor sleep quality (79.31%).

Conclusion

DTC patients suffer from sleep disturbance, 131I therapy and awareness of metastatic status could worsen sleep problem. Psychological fear of cancer, nuclear medicine therapy and metastasis could be one major underlying reason. Longitude and interventional studies are necessary for further investigations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号