首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   159篇
  免费   14篇
  2023年   1篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   2篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   15篇
  2011年   19篇
  2010年   11篇
  2009年   3篇
  2008年   13篇
  2007年   12篇
  2006年   5篇
  2005年   7篇
  2004年   5篇
  2003年   10篇
  2002年   4篇
  1998年   2篇
  1992年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1972年   2篇
  1970年   1篇
  1969年   1篇
  1968年   1篇
排序方式: 共有173条查询结果,搜索用时 15 毫秒
11.
Germ cells require intimate associations and signals from the surrounding somatic cells throughout gametogenesis. The zero population growth (zpg) locus of Drosophila encodes a germline-specific gap junction protein, Innexin 4, that is required for survival of differentiating early germ cells during gametogenesis in both sexes. Animals with a null mutation in zpg are viable but sterile and have tiny gonads. Adult zpg-null gonads contain small numbers of early germ cells, resembling stem cells or early spermatogonia or oogonia, but lack later stages of germ cell differentiation. In the male, Zpg protein localizes to the surface of spermatogonia, primarily on the sides adjacent to the somatic cyst cells. In the female, Zpg protein localizes to germ cell surfaces, both those adjacent to surrounding somatic cells and those adjacent to other germ cells. We propose that Zpg-containing gap junctional hemichannels in the germ cell plasma membrane may connect with hemichannels made of other innexin isoforms on adjacent somatic cells. Gap junctional intercellular communication via these channels may mediate passage of crucial small molecules or signals between germline and somatic support cells required for survival and differentiation of early germ cells in both sexes.  相似文献   
12.
The eukaryotic Hsp60 cytoplasmic chaperonin CCT (chaperonin containing the T-complex polypeptide-1) is essential for growth in budding yeast, and mutations in individual CCT subunits have been shown to affect assembly of tubulin and actin. The present research focused mainly on the expression of the CCT subunits, CCTalpha and CCTbeta, in yeast (Saccharomyces cerevisiae). Previous studies showed that, unlike most other chaperones, CCT in yeast does not undergo induction following heat shock. In this study, messenger ribonucleic acid (mRNA) and protein levels of CCT subunits following exposure to low temperatures, were examined. The Northern blot analysis indicated a 3- to 4-fold increase in mRNA levels of CCTalpha and CCTbeta genes after cold shock at 4 degrees C. Interestingly, Western blot analysis showed that cold shock induces an increase in the CCTalpha protein, which is expressed at 10 degrees C, but not at 4 degrees C. Transfer of 4 degrees C cold-shocked cells to 10 degrees C induced a 5-fold increase in the CCTalpha protein level. By means of fluorescent immunostaining and confocal microscopy, we found CCTalpha to be localized in the cortex and the cell cytoplasm of S. cerevisiae. Localization of CCTalpha was not affected at low temperatures. Co-localization of CCT and filaments of actin and tubulin was not observed by microscopy. The induction pattern of the CCTalpha protein suggests that expression of the chaperonin may be primarily important during the recovery from low temperatures and the transition to growth at higher temperatures, as found for other Hsps during the recovery phase from heat shock.  相似文献   
13.
The problem of moving from one coadapted gene complex to a better one can be divided into two steps: first the advantageous combination has to appear and then it has to take over the population. Selection can have contrasting effects on the two stages. When selection is weak intermediate forms are frequent, and the advantageous combination appears easily. Spreading of that advantageous combination, on the other hand, tends to be hard, as recombination acts to break it. The opposite is true when selection is strong. Spreading is easier, but if selection is also strong against the intermediate forms, the appearance of the beneficial combination becomes an extremely rare event.This inherent contrast in the optimal conditions for the two stages raises the possibility that proximity of areas differing in the intensity of selection may significantly shorten the expected waiting time for a peak shift. We studied this phenomenon in a haploid two-locus diallelic model of two neighboring subpopulations. Our results show that limited migration between the two areas might shorten the waiting time for a peak shift by orders of magnitude in comparison with either complete isolation or complete mixing. Implications for peripheral evolution and speciation are discussed.  相似文献   
14.
15.
The evolution of sex is one of the greatest mysteries in evolutionary biology. An even greater mystery is the evolution of obligate sex, particularly when competing with facultative sex and not with complete asexuality. Here, we develop a stochastic simulation of an obligate allele invading a facultative population, where males are subject to sexual selection. We identify a range of parameters where sexual selection can contribute to the evolution of obligate sex: Especially when the cost of sex is low, mutation rate is high, and the facultative individuals do not reproduce sexually very often. The advantage of obligate sex becomes larger in the absence of recombination. Surprisingly, obligate sex can take over even when the population has a lower mean fitness as a result. We show that this is due to the high success of obligate males that can compensate the cost of sex.  相似文献   
16.
Apicomplexans possess three translationally active compartments: the cytosol, a single tubular mitochondrion, and a vestigial plastid organelle called apicoplast. Mitochondrion and apicoplast are of bacterial evolutionary origin and therefore depend on a bacterial‐like translation machinery. The minimal mitochondrial genome contains only three ORFs, and in Toxoplasma gondii the absence of mitochondrial tRNA genes is compensated for by the import of cytosolic eukaryotic tRNAs. Although all compartments require a complete set of charged tRNAs, the apicomplexan nuclear genomes do not hold sufficient aminoacyl‐tRNA synthetase (aaRSs) genes to be targeted individually to each compartment. This study reveals that aaRSs are either cytosolic, apicoplastic or shared between the two compartments by dual targeting but are absent from the mitochondrion. Consequently, tRNAs are very likely imported in their aminoacylated form. Furthermore, the unexpected absence of tRNAMet formyltransferase and peptide deformylase implies that the requirement for a specialized formylmethionyl‐tRNAMet for translation initiation is bypassed in the mitochondrion of Apicomplexa.  相似文献   
17.
Macroscopic chiral objects (boats and planes with turned rudders, shoes, etc.) get separated from their mirror‐image counterparts by motion in achiral media. However, chiral molecules are not enantio‐differentiated without the presence of a chiral environment, which may be due to other chiral molecules in the medium. This article explores the reasons of this micro/macro difference as well as the size borderline between the two regimes. There are two major demarcation lines, both related to the object's chaotic thermal motion. The first one is due to destruction of the necessary spatial orientation by the fast rotational diffusion. Only particles larger than 1 μm can maintain their original orientation for 1 sec or longer. For smaller particles, an additional external orienting factor, e.g., a strong electric field has to be applied. The second limitation is defined by the ratio of the hydrodynamic separation of the enantiomers (which is directly proportional to time) to their displacement due to the translational Brownian motion (which is proportional to square root of time). On the laboratory time scales (up to a year), the chiral objects have to be larger than 0.25 μm to be resolved. On evolutionary time scales, much smaller object could be resolved. For enantiomers approaching the molecular size, periods comparable to the age of the universe would be required. Chirality, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
18.
Rising concentrations of atmospheric carbon dioxide are acidifying the world''s oceans. Surface seawater pH is 0.1 units lower than pre-industrial values and is predicted to decrease by up to 0.4 units by the end of the century. This change in pH may result in changes in the physiology of ocean organisms, in particular, organisms that build their skeletons/shells from calcium carbonate, such as corals. This physiological change may also affect other members of the coral holobiont, for example, the microbial communities associated with the coral, which in turn may affect the coral physiology and health. In the present study, we examined changes in bacterial communities in the coral mucus, tissue and skeleton following exposure of the coral Acropora eurystoma to two different pH conditions: 7.3 and 8.2 (ambient seawater). The microbial community was different at the two pH values, as determined by denaturing gradient gel electrophoresis and 16S rRNA gene sequence analysis. Further analysis of the community in the corals maintained at the lower pH revealed an increase in bacteria associated with diseased and stressed corals, such as Vibrionaceae and Alteromonadaceae. In addition, an increase in the number of potential antibacterial activity was recorded among the bacteria isolated from the coral maintained at pH 7.3. Taken together, our findings highlight the impact that changes in the pH may have on the coral-associated bacterial community and their potential contribution to the coral host.  相似文献   
19.
Advanced hypertension (HT), associated with left ventricular hypertrophy (LVH), impairs myocardial microvascular function and structure and leads to increased myocardial hypoxia and growth factor activation. However, the effect of HT on microvascular architecture and its relation to microvascular function, before the development of LVH (early HT), remains unclear. By way of method, pigs were studied after 12 wk of renovascular HT (n = 7) or control (n = 7) animals. Myocardial microvascular function (blood volume and blood flow at baseline and in response to adenosine) was assessed by using electron beam computed tomography (CT). Microvascular architecture was subsequently studied ex vivo using micro-CT, and microvessels (diameter, <500 microm) were counted in situ in three-dimensional images (40-microm on-a-side cubic voxels). Myocardial expression of vascular endothelial growth factor, basic fibroblast growth factor, and hypoxia-inducible factor-1alpha were also measured. By way of results, left ventricular muscle mass was similar between the groups. The blood volume response to intravenous adenosine was attenuated in HT animals compared with normal animals (+7.4 +/- 17.0 vs. +46.2 +/- 12.3% compared with baseline, P = 0.48 and P = 0.01, respectively). Microvascular spatial density in HT animals was significantly elevated compared with normal animals (246 +/- 26 vs. 125 +/- 20 vessels/cm2, P < 0.05) and correlated inversely with the blood volume response to adenosine. Growth factors expression was increased in HT animals compared with control animals. In conclusion, early HT elicits changes in myocardial microvascular architecture, which are associated with microvascular dysfunction and precede changes in muscle mass. These observations underscore the direct and early effects of HT on the myocardial vasculature.  相似文献   
20.
Hypercholesterolemia (HC), a major risk factor for onset and progression of renal disease, is associated with increased oxidative stress, potentially causing endothelial dysfunction. One of the sources of superoxide anion is xanthine oxidase (XO), but its contribution to renal endothelial function in HC remains unclear. We tested the hypothesis that XO modulates renal hemodynamics and endothelial function in HC pigs. Four groups (n = 23) of female domestic pigs were studied 12 wk after either normal (n = 11) or HC diet (n = 12). Oxidative stress was assessed by plasma isoprostanes and oxidized LDL, and the XO system by plasma uric acid, urinary xanthine, and renal XO expression (by immunoblotting and immunohistochemistry). Renal hemodynamics and function were studied with electron beam-computed tomography before and after endothelium-dependent (ACh) and -independent (sodium nitroprusside) challenge, during a concurrent intrarenal infusion of either oxypurinol or saline (n = 5-6 in each group). HC showed elevated oxidative stress, higher plasma uric acid (23.8 +/- 3.8 vs. 6.2 +/- 0.8 microM/mM creatinine, P = 0.001), lower urinary xanthine, and greater renal XO expression compared with normal. Inhibition of XO in HC significantly improved the blunted responses to ACh of cortical perfusion (13.5 +/- 12.1 and 37.2 +/- 10.6%, P = 0.01 and P = not significant vs. baseline, respectively), renal blood flow, and glomerular filtration rate; restored medullary perfusion; and improved the blunted cortical perfusion response to sodium nitroprusside. This study demonstrates that the endogenous XO system is activated in swine HC. Furthermore, it suggests an important role for XO in regulation of renal hemodynamics, function, and endothelial function in experimental HC.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号