首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   148篇
  免费   14篇
  2023年   1篇
  2022年   4篇
  2021年   8篇
  2020年   5篇
  2019年   3篇
  2018年   5篇
  2017年   1篇
  2016年   3篇
  2015年   5篇
  2014年   6篇
  2013年   6篇
  2012年   15篇
  2011年   18篇
  2010年   12篇
  2009年   3篇
  2008年   14篇
  2007年   13篇
  2006年   6篇
  2005年   8篇
  2004年   5篇
  2003年   9篇
  2002年   4篇
  1998年   1篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有162条查询结果,搜索用时 15 毫秒
71.
Coronary artery disease is a leading cause of death. Hypertension (HT) increases the incidence of cardiac events, but its effect on cardiac adaptation to coexisting coronary artery stenosis (CAS) is unclear. We hypothesized that concurrent HT modulates microvascular function in chronic CAS and aggravates microvascular remodeling and myocardial injury. Four groups of pigs (n=6 each) were studied: normal, CAS, HT, and CAS+HT. CAS and HT were induced by placing local irritant coils in the left circumflex coronary artery and renal artery, respectively. Six weeks later multidetector computerized tomography (CT) was used to assess systolic and diastolic function, microvascular permeability, myocardial perfusion, and responses to adenosine in the "area at risk." Microvascular architecture, inflammation, and fibrosis were then explored in cardiac tissue. Basal myocardial perfusion was similarly decreased in CAS and CAS+HT, but its response to adenosine was significantly more attenuated in CAS. Microvascular permeability in CAS+HT was greater than in CAS and was accompanied by amplified myocardial inflammation, fibrosis, and microvascular remodeling, as well as cardiac systolic and diastolic dysfunction. On the other hand, compared with normal, micro-CT-derived microvascular (20-200 μm) transmural density decreased in CAS but not in HT or CAS+HT. We conclude that the coexistence of early renovascular HT exacerbated myocardial fibrosis and vascular remodeling distal to CAS. These changes were not mediated by loss of myocardial microvessels, which were relatively preserved, but possibly by exacerbated myocardial inflammation and fibrosis. HT modulates cardiac adaptive responses to CAS and bears cardiac functional consequences.  相似文献   
72.
Myocardial microvascular permeability and coronary sinus concentration of muscle metabolites have been shown to increase after myocardial ischemia due to epicardial coronary artery occlusion and reperfusion. However, their association with coronary microembolization is not well defined. This study tested the hypothesis that acute coronary microembolization increases microvascular permeability in the porcine heart. The left anterior descending perfusion territories of 34 anesthetized pigs (32 ± 3 kg) were embolized with equal volumes of microspheres of one of three diameters (10, 30, or 100 μm) and at three different doses for each size. Electron beam computed tomography (EBCT) was used to assess in vivo, microvascular extraction of a nonionic contrast agent (an index of microvascular permeability) before and after microembolization with microspheres at baseline and during adenosine infusion. A high-resolution three-dimensional microcomputed tomography (micro-CT) scanner was subsequently used to obtain ex vivo, the volume and corresponding surface area of the embolized myocardial islands within the perfusion territories of the microembolized coronary artery. EBCT-derived microvascular extraction of contrast agent increased within minutes after coronary microembolization (P < 0.001 vs. baseline and vs. control values). The increase in coronary microvascular permeability was highly correlated to the micro-CT-derived total surface area of the nonperfused myocardium (r = 0.83, P < 0.001). In conclusion, myocardial extravascular accumulation of contrast agent is markedly increased after coronary microembolization and its magnitude is in proportion to the surface area of the interface between the nonperfused and perfused territories.  相似文献   
73.
Many organs depend on stem cells for their development during embryogenesis and for maintenance or repair during adult life. Understanding how stem cells form, and how they interact with their environment is therefore crucial for understanding development, homeostasis and disease. The ovary of the fruit fly Drosophila melanogaster has served as an influential model for the interaction of germ line stem cells (GSCs) with their somatic support cells (niche) 1, 2. The known location of the niche and the GSCs, coupled to the ability to genetically manipulate them, has allowed researchers to elucidate a variety of interactions between stem cells and their niches 3-12.Despite the wealth of information about mechanisms controlling GSC maintenance and differentiation, relatively little is known about how GSCs and their somatic niches form during development. About 18 somatic niches, whose cellular components include terminal filament and cap cells (Figure 1), form during the third larval instar 13-17. GSCs originate from primordial germ cells (PGCs). PGCs proliferate at early larval stages, but following the formation of the niche a subgroup of PGCs becomes GSCs 7, 16, 18, 19. Together, the somatic niche cells and the GSCs make a functional unit that produces eggs throughout the lifetime of the organism.Many questions regarding the formation of the GSC unit remain unanswered. Processes such as coordination between precursor cells for niches and stem cell precursors, or the generation of asymmetry within PGCs as they become GSCs, can best be studied in the larva. However, a methodical study of larval ovary development is physically challenging. First, larval ovaries are small. Even at late larval stages they are only 100μm across. In addition, the ovaries are transparent and are embedded in a white fat body. Here we describe a step-by-step protocol for isolating ovaries from late third instar (LL3) Drosophila larvae, followed by staining with fluorescent antibodies. We offer some technical solutions to problems such as locating the ovaries, staining and washing tissues that do not sink, and making sure that antibodies penetrate into the tissue. This protocol can be applied to earlier larval stages and to larval testes as well.Download video file.(47M, mov)  相似文献   
74.
Increased systemic inflammation and oxidative stress are well established as nontraditional key players in the pathogenesis of atherosclerosis and are also involved in the innate immunity dysregulation in hemodialysis (HD) patients. The study aim was to investigate the effect of 1-year intake of pomegranate juice, an antioxidant source, on oxidative stress, inflammation, and long-term clinical outcomes. A randomized placebo controlled double-blind trial was designed, enrolling 101 chronic HD patients to receive during each dialysis 100 cc of pomegranate juice, or matching placebo, three times a week for 1 year. The primary endpoints were levels of oxidative stress and inflammation biomarkers. Secondary endpoints were hospitalization due to infections and the progression of atherosclerotic process based on a composite of variables of the carotid arteries: intima media thickness (IMT), number, and structure of plaques. Pomegranate juice intake yielded a significant time response reduction in polymorphonuclear leukocyte priming, protein oxidation, lipid oxidation, and inflammation biomarkers levels. These beneficial effects were abolished 3 months postintervention. Pomegranate juice intake resulted in a significantly lower incidence rate of the second hospitalization due to infections. Furthermore, 25% of the patients in the pomegranate juice group had improvement and only 5% progression in the atherosclerotic process, while more than 50% of patients in the placebo group showed progression and none showed any improvement. Prolonged pomegranate juice intake improves nontraditional CV risk factors, attenuates the progression of the atherosclerotic process, strengthens the innate immunity, and thus reduces morbidity among HD patients.  相似文献   
75.
Renal artery stenosis (RAS) promotes microvascular rarefaction and fibrogenesis, which may eventuate in irreversible kidney injury. We have shown that percutaneous transluminal renal angioplasty (PTRA) or endothelial progenitor cells (EPC) improve renal cortical hemodynamics and function in the poststenotic kidney. The renal medulla is particularly sensitive to hypoxia, yet little is known about reversibility of medullary injury on restoration of renal blood flow. This study was designed to test the hypothesis that PTRA, with or without adjunct EPC delivery to the stenotic kidney, may improve medullary remodeling and tubular function. RAS was induced in 21 pigs using implantation of irritant coils, while another group served as normal controls (n = 7 each). Two RAS groups were then treated 6 wk later with PTRA or both PTRA and EPC. Four weeks later, medullary hemodynamics, microvascular architecture, and oxygen-dependent tubular function of the stenotic kidneys were examined using multidetector computed tomography, microcomputed tomography, and blood oxygenation level-dependent MRI, respectively. Medullary protein expression of vascular endothelial growth factor, endothelial nitric oxide synthase, hypoxia-inducible factor-1α, and NAD(P)H oxidase p47 were determined. All RAS groups showed decreased medullary vascular density and blood flow. However, in RAS+PTRA+EPC animals, EPC were engrafted in tubular structures, oxygen-dependent tubular function was normalized, and fibrosis attenuated, despite elevated expression of hypoxia-inducible factor-1α and sustained downregulation of vascular endothelial growth factor. In conclusion, EPC delivery, in addition to PTRA, restores medullary oxygen-dependent tubular function, despite impaired medullary blood and oxygen supply. These results support further development of cell-based therapy as an adjunct to revascularization of RAS.  相似文献   
76.
77.
Much attention has been given to the role of the niche in controlling stem cell maintenance and differentiation. However, cells other than niche cells might direct stem cell behavior. Evidence from the Drosophila reproductive system suggests that this is the case.  相似文献   
78.
Requirement of the MRN complex for ATM activation by DNA damage   总被引:34,自引:0,他引:34  
The ATM protein kinase is a primary activator of the cellular response to DNA double-strand breaks (DSBs). In response to DSBs, ATM is activated and phosphorylates key players in various branches of the DNA damage response network. ATM deficiency causes the genetic disorder ataxia-telangiectasia (A-T), characterized by cerebellar degeneration, immunodeficiency, radiation sensitivity, chromosomal instability and cancer predisposition. The MRN complex, whose core contains the Mre11, Rad50 and Nbs1 proteins, is involved in the initial processing of DSBs. Hypomorphic mutations in the NBS1 and MRE11 genes lead to two other genomic instability disorders: the Nijmegen breakage syndrome (NBS) and A-T like disease (A-TLD), respectively. The order in which ATM and MRN act in the early phase of the DSB response is unclear. Here we show that functional MRN is required for ATM activation, and consequently for timely activation of ATM-mediated pathways. Collectively, these and previous results assign to components of the MRN complex roles upstream and downstream of ATM in the DNA damage response pathway and explain the clinical resemblance between A-T and A-TLD.  相似文献   
79.
Advanced stages of both cancer and atherosclerosis are characterized by a local increase in tissue mass that may be hard to control. This increase in tissue mass can be attributed to oxidation-sensitive modification of cell cycle-related events, including cellular proliferation, differentiation, and apoptosis, which could be secondary to alteration in the activity of tumor suppressor gene and oncogene products. The oncogene c-Myc has classically been considered to be involved in carcinogenesis and has more recently been implicated in both endothelial dysfunction and atherogenesis as well. Consequently, inhibition of c-Myc-dependent signaling has become a novel therapeutic opportunity and challenge in atherosclerosis and other cardiovascular diseases. Antioxidant strategies, RNA synthesis inhibitors such as mithramycin, and gene therapeutic approaches with antisense oligonucleotides against c-Myc are some of the promising strategies. In general, the increased biologic understanding of the participation of cell cycle events and targeting these events may enable to attenuate or prevent some of the complications of vascular and neoplastic diseases.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号