首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   58篇
  504篇
  2022年   5篇
  2021年   15篇
  2019年   9篇
  2018年   8篇
  2017年   3篇
  2016年   17篇
  2015年   16篇
  2014年   19篇
  2013年   18篇
  2012年   23篇
  2011年   28篇
  2010年   20篇
  2009年   10篇
  2008年   29篇
  2007年   19篇
  2006年   27篇
  2005年   19篇
  2004年   22篇
  2003年   21篇
  2002年   19篇
  2001年   9篇
  2000年   5篇
  1999年   12篇
  1998年   5篇
  1997年   6篇
  1995年   4篇
  1994年   8篇
  1993年   2篇
  1992年   9篇
  1991年   9篇
  1990年   6篇
  1989年   8篇
  1988年   4篇
  1987年   3篇
  1986年   3篇
  1985年   4篇
  1984年   4篇
  1983年   4篇
  1982年   3篇
  1981年   3篇
  1980年   3篇
  1979年   8篇
  1978年   3篇
  1976年   2篇
  1975年   4篇
  1974年   3篇
  1968年   2篇
  1965年   2篇
  1964年   2篇
  1956年   2篇
排序方式: 共有504条查询结果,搜索用时 15 毫秒
81.
82.
83.
84.
The widespread use of monoclonal antibodies (mAbs) as a platform for therapeutic drug development in the pharmaceutical industry has led to an increased interest in robust experimental approaches for assessment of mAb structure, stability and dynamics. The ability to enrich proteins with stable isotopes is a prerequisite for the in-depth application of many structural and biophysical methods, including nuclear magnetic resonance (NMR), small angle neutron scattering, neutron reflectometry, and quantitative mass spectrometry. While mAbs can typically be produced with very high yields using mammalian cell expression, stable isotope labeling using cell culture is expensive and often impractical. The most common and cost-efficient approach to label proteins is to express proteins in Escherichia coli grown in minimal media; however, such methods for mAbs have not been reported to date. Here we present, for the first time, the expression and purification of a stable isotope labeled mAb from a genetically engineered E. coli strain capable of forming disulfide bonds in its cytoplasm. It is shown using two-dimensional NMR spectral fingerprinting that the unlabeled mAb and the mAb singly or triply labeled with 13C, 15N, 2H are well folded, with only minor structural differences relative to the mammalian cell-produced mAb that are attributed to the lack of glycosylation in the Fc domain. This advancement of an E. coli-based mAb expression platform will facilitate the production of mAbs for in-depth structural characterization, including the high resolution investigation of mechanisms of action.  相似文献   
85.

Key message

Chlamydomonas RNase J is the first member of this enzyme family that has endo- but no intrinsic 5′ exoribonucleolytic activity. This questions its proposed role in chloroplast mRNA maturation.

Abstract

RNA maturation and stability in the chloroplast are controlled by nuclear-encoded ribonucleases and RNA binding proteins. Notably, mRNA 5′ end maturation is thought to be achieved by the combined action of a 5′ exoribonuclease and specific pentatricopeptide repeat proteins (PPR) that block the progression of the nuclease. In Arabidopsis the 5′ exo- and endoribonuclease RNase J has been implicated in this process. Here, we verified the chloroplast localization of the orthologous Chlamydomonas (Cr) RNase J and studied its activity, both in vitro and in vivo in a heterologous B. subtilis system. Our data show that Cr RNase J has endo- but no significant intrinsic 5′ exonuclease activity that would be compatible with its proposed role in mRNA maturation. This is the first example of an RNase J ortholog that does not possess a 5′ exonuclease activity. A yeast two-hybrid screen revealed a number of potential interaction partners but three of the most promising candidates tested, failed to induce the latent exonuclease activity of Cr RNase J. We still favor the hypothesis that Cr RNase J plays an important role in RNA metabolism, but our findings suggest that it rather acts as an endoribonuclease in the chloroplast.
  相似文献   
86.
We have introduced a proline codon in place of a leucine codon at position 204 of the petB gene of Chlamydomonas reinhardtii. This gene modification mimics the presence of proline codons at the same position in the petB genes of maize and tobacco, which are subsequently edited to leucine codons at the RNA level. Following transformation, we observed no editing at this position in C. reinhardtii, independent of the type of proline codon we have used: the CCA codon, edited in maize, or a CCT codon. Strains carrying the introduced mutation were non phototrophic and displayed a block in photosynthetic electron transfer, consistent with a lack of cytochrome b6f activity. Thus the presence of a proline residue at position 204 in cytochrome b6 is detrimental to photosynthesis. We show that the mutant phenotype arose from a defective assembly of cytochrome b6f complexes and not from altered electron transfer properties in the assembled protein complex. Biochemical comparison of the proline-containing transformants with a cytochrome b6 mutant deficient in heme-attachment indicates that their primary defect is at the level of assembly of apocytochrome b6 with the bh heme, thereby preventing assembly of the whole cytochrome b6f complex.  相似文献   
87.
88.
89.
90.
The low-density lipoprotein receptor-related protein receptors 1 and 2 (LRP1 and LRP2) are emerging as important cell signaling mediators in modulating neuronal growth and repair. We examined whether LRP1 and LRP2 are able to mediate a specific aspect of neuronal growth: axon guidance. We sought to identify LRP1 and LRP2 ligands that could induce axonal chemoattraction, which might have therapeutic potential. Using embryonic sensory neurons (rat dorsal root ganglia) in a growth cone turning assay, we tested a range of LRP1 and LRP2 ligands for the ability to guide growth cone navigation. Three ligands were chemorepulsive: α-2-macroglobulin, tissue plasminogen activator, and metallothionein III. Conversely, only one LRP ligand, metallothionein II, was found to be chemoattractive. Chemoattraction toward a gradient of metallothionein II was calcium-dependent, required the expression of both LRP1 and LRP2, and likely involves further co-receptors such as the tropomyosin-related kinase A (TrkA) receptor. The potential for LRP-mediated chemoattraction to mediate axonal regeneration was examined in vivo in a model of chemical denervation in adult rats. In these in vivo studies, metallothionein II was shown to enhance epidermal nerve fiber regeneration so that it was complete within 7 days compared with 14 days in saline-treated animals. Our data demonstrate that both LRP1 and LRP2 are necessary for metallothionein II-mediated chemotactic signal transduction and that they may form part of a signaling complex. Furthermore, the data suggest that LRP-mediated chemoattraction represents a novel, non-classical signaling system that has therapeutic potential as a disease-modifying agent for the injured peripheral nervous system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号