首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9931篇
  免费   764篇
  国内免费   1008篇
  2024年   36篇
  2023年   180篇
  2022年   376篇
  2021年   667篇
  2020年   436篇
  2019年   496篇
  2018年   488篇
  2017年   367篇
  2016年   454篇
  2015年   660篇
  2014年   747篇
  2013年   791篇
  2012年   962篇
  2011年   838篇
  2010年   511篇
  2009年   434篇
  2008年   483篇
  2007年   430篇
  2006年   370篇
  2005年   313篇
  2004年   248篇
  2003年   213篇
  2002年   174篇
  2001年   117篇
  2000年   122篇
  1999年   122篇
  1998年   97篇
  1997年   98篇
  1996年   67篇
  1995年   65篇
  1994年   72篇
  1993年   36篇
  1992年   45篇
  1991年   37篇
  1990年   25篇
  1989年   31篇
  1988年   16篇
  1987年   15篇
  1986年   10篇
  1985年   20篇
  1984年   6篇
  1983年   8篇
  1982年   7篇
  1981年   1篇
  1980年   4篇
  1979年   4篇
  1978年   2篇
  1975年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 703 毫秒
991.
Genomic imprinting of H19 in naturally reproduced and cloned cattle   总被引:1,自引:0,他引:1  
Animals produced from assisted reproductive technologies suffer from developmental abnormalities and early fetal death at a higher frequency than that observed in those produced by natural breeding. These symptoms are reminiscent of imprinting disruptions in the human and mouse, suggesting the possibility of perturbations in the expression of imprinted genes such as biallelic expression or silencing. H19 is one of the imprinted genes first identified in mice and humans, but its sequence and imprinting status have not been determined in cattle. In the present study, we obtained the majority of the bovine H19 gene sequence (approximately 2311 base pairs), identified a single nucleotide polymorphism (SNP) in exon 5 and determined the frequencies of different alleles containing the SNP. Our analysis demonstrated that, in cattle produced by natural breeding, H19 was indeed imprinted as shown by either predominant or exclusive expression of the maternal allele. We also analyzed the imprinting pattern of H19 in organs of four animals produced by somatic cell nuclear transfer that died shortly after birth or had developed abnormalities that necessitated immediate killing at birth. Three out of four cloned animals showed biallelic expression of H19, supporting our hypothesis that imprinting disruption is present in cloned animals that suffered from developmental abnormalities at birth. Examination of the expression of H19 in the offspring of a cloned animal produced by artificial insemination showed that the imprinting pattern in this animal was indistinguishable from those of control animals, suggesting that either imprinting disruptions in cloned animals are corrected through natural reproduction or that they are not present in healthy cloned animals capable of undergoing natural reproduction.  相似文献   
992.
Maturation of gamma-secretase requires an endoproteolytic cleavage in presenilin-1 (PS1) within a peptide loop encoded by exon 9 of the corresponding gene. Deletion of the loop has been demonstrated to cause familial Alzheimer's disease. A synthetic peptide corresponding to the loop sequence was found to inhibit gamma-secretase in a cell-free enzymatic assay with an IC(50) of 2.1 microM, a value similar to the K(m) (3.5 microM) for the substrate C100. Truncation at either end, single amino acid substitutions at certain residues, sequence reversal, or randomization reduced its potency. Similar results were also observed in a cell-based assay using HEK293 cells expressing APP. In contrast to small-molecule gamma-secretase inhibitors, kinetic inhibition studies demonstrated competitive inhibition of gamma-secretase by the exon 9 peptide. Consistent with this finding, inhibitor cross-competition kinetics indicated noncompetitive binding between the exon 9 peptide and L685458, a transition-state analogue presumably binding at the catalytic site, and ligand competition binding experiments revealed no competition between L685458 and the exon 9 peptide. These data are consistent with the proposed gamma-secretase mechanism involving separate substrate-binding and catalytic sites and binding of the exon 9 peptide at the substrate-binding site, but not the catalytic site of gamma-secretase. NMR analyses demonstrated the presence of a loop structure with a beta-turn in the middle of the exon 9 peptide and a loose alpha-helical conformation for the rest of the peptide. Such a structure supports the hypothesis that this exon 9 peptide can adopt a distinct conformation, one that is compact enough to occupy the putative substrate-binding site without necessarily interfering with binding of small molecule inhibitors at other sites on gamma-secretase. We hypothesize that gamma-secretase cleavage activation may be a result of a cleavage-induced conformational change that relieves the inhibitory effect of the intact exon 9 loop occupying the substrate-binding site on the immature enzyme. It is possible that the DeltaE9 mutation causes Alzheimer's disease because cleavage activation of gamma-secretase is no longer necessary, alleviating constraints on Abeta formation.  相似文献   
993.
Chen HQ  Tian W  Chen YS  Li L  Raum J  Sung KL 《Biorheology》2004,41(5):655-664
We investigated neutrophil activation, specifically F-actin content and distribution, in situations mimicking the in vivo environment using steady and oscillatory shear. Under low steady shear (<150 s(-1)) F-actin levels were decreased for both treated (n-formyl-L-methioryl-L-leucyl-L-phenylalanine (fMLP)) and untreated neutrophils. The F-actin content increased with a change to higher steady shear levels. Neutrophils show the same behavior of decreased F-actin content for oscillatory shear (26.7 s(-1)) as they did for steady shear. In both situations, the low shear levels caused a decrease in F-actin content. However, as the magnitude of the shear rate increased, cells showed a reversal to increasing F-actin content. Shear caused a decrease in F-actin in the cell cortex for both control and fMLP treated cells. Ctyochalasin B (CB), a common F-actin assembly blocker, significantly decreased F-actin content. The results indicate that neutrophils regulate their actin network based on the level and type of shear stress they encounter in the bloodstream.  相似文献   
994.
The inhibitory effects of 15 flavonoids on animal fatty acid synthase (FAS, EC 2.3.1.85) were investigated, and 9 of them were found to inhibit FAS with IC(50) (the inhibitor concentration inhibiting 50% of the activity of FAS) values ranging from 2 to 112 microM. A structure-activity relationship study showed that the flavonoids containing two hydroxyl groups in the B ring and 5,7-hydroxyl groups in the A ring in combination with a C-2, 3 double bond were the most inhibitory. Morin (IC(50) = 2.33 +/- 0.09 microM) was further investigated kinetically to detail the inhibitory mechanism. The results showed that morin inhibited the overall reaction of FAS competitively with Ac-CoA, noncompetitively with Mal-CoA and in a mixed manner with NADPH. The study indicated that morin bound reversibly to the beta-ketoacyl synthase domain of FAS to inhibit the elongation of the saturated acyl groups in fatty acids synthesis.  相似文献   
995.
996.
997.
The only outer mitochondrial membrane cytochrome b(5) examined to date, from rat (rOM b(5)), exhibits greater stability than known mammalian microsomal (Mc) isoforms, as well as a much higher kinetic barrier for hemin dissociation and a more negative reduction potential. A BlastP search of available databases using the protein sequence of rOM b(5) as template revealed entries for analogous proteins from human (hOM b(5)) and mouse (mOM b(5)). We prepared a synthetic gene coding for the heme-binding domain of hOM b(5), and expressed the protein to high levels. The hOM protein exhibits stability, hemin-binding, and redox properties similar to those of rOM b(5), suggesting that they are characteristic of the OM b(5) subfamily. The divergence in properties between the OM and Mc b(5) isoforms in mammals can be attributed, at least in part, to the presence of two extended hydrophobic patches in the former. The biophysical properties characteristic of the OM proteins may be important in facilitating the two functions proposed for them so far, reduction of ascorbate radical and stimulation of androgen synthesis.  相似文献   
998.
The family of UDP-GalNAc:polypeptide N-acetylgalactosaminyltransferases (ppGaNTases) is responsible for initiating mucin-type O-linked glycosylation in higher eukaryotes. To begin to examine the biological role of O-linked glycosylation, mammalian cells were treated with a small molecule inhibitor (designated 1-68A, Ref. 15) of ppGaNTase activity. NIH3T3 cells exposed to the inhibitor were shown to undergo a significant reduction in cell surface O-glycosylation as detected by staining with jacalin and peanut agglutinin lectins after 30 min of treatment; no reduction in staining using antibodies to O-linked N-acetylglucosamine or the lectin concanavalin A was detected. Apoptosis was also observed in treated cells after 45 min of exposure, ostensibly following the O-glycosylation reduction. Overexpression of several different ppGaNTase isoforms restored cell surface O-glycosylation and rescued inhibitor-induced apoptosis. Additionally, mouse embryonic mandibular organ cultures exposed to 1-68A developed abnormally, presumably because of epithelial and mesenchymal apoptosis that followed a reduction in jacalin and peanut agglutinin staining. Our studies suggest that mucin-type O-linked glycosylation may be required for normal development and that ppGaNTases may play a role in the regulation of apoptosis.  相似文献   
999.
A full-length gene GmPti1 was identified from soybean in an EST sequencing project by its homology to tomato Pti1. It encoded a protein of 366 amino acids. RT-PCR analysis showed that the GmPti1 expression was induced by salicylic acid and wounding. The deduced amino acid sequence had a Ser/Thr/Tyr kinase domain. GmPti1 protein was expressed in E. coli as an MBP fusion, purified by amylose resin and examined for its autophosphorylation ability. The phosphorylation assay in vitro showed that GmPti1 had kinase activity in the presence of Mn2+. These results demonstrated that GmPti1 represented a new Pti1-like gene, unlike the two published genes sPti1a and sPti1b, which encoding proteins had no autophosphorylation ability.  相似文献   
1000.
We cloned from a rat brain cDNA library a novel cDNA and named it a potential synaptic guanine nucleotide exchange factor (GEF) for Arf (synArfGEF (Po)) (GenBank Accession no. AB057643) based on its domain structure and localization. The cloned gene was 7410 bases long with a 3585-bp coding sequence encoding a protein of 1194 amino acids. The deduced protein contained a coiled-coil structure in the N-terminal portion followed by Sec7 and Plekstrin homology (PH) domains. Thus, the protein was a member of the Sec7 family of proteins, GEFs. Conservation of the ADP-ribosylation factor (Arf)-binding sequence suggested that the protein was a GEF for Arf. The gene was expressed specifically in the brain, where it exhibited region-specific expression. The protein was highly enriched in the postsynaptic density (PSD) fraction prepared from the rat forebrain. Uniquely, the protein interacted with PSD-95, SAP97 and Homer/Vesl 1/PSD-Zip45 via its C-terminal PDZ-binding motif and co-localized with these proteins in cultured cortical neurons. These results supported its localization in the PSD. The postsynaptic localization was also supported by immunohistochemical examination of the rat brain. The mRNA for the synArfGEF was also localized to dendrites, as well as somas, of neuronal cells. Thus, both the mRNA and the protein were localized in the postsynaptic compartments. These results suggest a postsynaptic role of synArfGEF in the brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号