首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4855篇
  免费   355篇
  国内免费   326篇
  5536篇
  2024年   30篇
  2023年   75篇
  2022年   166篇
  2021年   247篇
  2020年   170篇
  2019年   190篇
  2018年   200篇
  2017年   146篇
  2016年   215篇
  2015年   274篇
  2014年   352篇
  2013年   382篇
  2012年   424篇
  2011年   362篇
  2010年   235篇
  2009年   216篇
  2008年   239篇
  2007年   174篇
  2006年   163篇
  2005年   165篇
  2004年   157篇
  2003年   147篇
  2002年   106篇
  2001年   119篇
  2000年   83篇
  1999年   97篇
  1998年   46篇
  1997年   35篇
  1996年   36篇
  1995年   34篇
  1994年   30篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   8篇
  1988年   17篇
  1987年   13篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
排序方式: 共有5536条查询结果,搜索用时 16 毫秒
91.
The regulation of protein phosphorylation requires coordinated interaction between protein kinases and protein phosphatases (PPs). Recent evidence has shown that the Galphaq-protein-coupled metabotropic glutamate receptor (mGluR) 5 up-regulates phosphorylation of MAPK/ERK1/2. However, signaling mechanisms linking mGluR5 to ERK are poorly understood. In this study, roles of a major serine/threonine PP, PP2A, in this event were evaluated in cultured neurons. We found that the PP1/2A inhibitors okadaic acid and calyculin A mimicked the effect of the mGluR5 agonists (RS)-3,5-dihydroxyphenylglycine and (RS)-2-chloro-5-hydroxyphenylglycine in facilitating phosphorylation of ERK1/2 and its upstream kinase, MEK1/2, in a PP2A-dependent but not PP1-dependent manner. Co-administration of either inhibitor with an mGluR5 agonist produced additive phosphorylation of ERK1/2. Enzymatic assays showed a basal level of phosphatase activity of PP2A under normal conditions, and activation of mGluR5 selectively inhibited PP2A, but not PP1, activity. In addition, a physical association of the cytoplasmic C terminus of mGluR5 with PP2A was observed, and ligand activation of mGluR5 reduced mGluR5-PP2A binding. Additional mechanistic studies revealed that mGluR5 activation increased tyrosine (Tyr307) phosphorylation of PP2A, which was dependent on activation of a p60c-Src family tyrosine kinase, but not the epidermal growth factor receptor tyrosine kinase and resulted in dissociation of PP2A from mGluR5 and reduced PP2A activity. Together, we have identified a novel, mGluR5-triggered signaling mechanism involving use- and Src-dependent inactivation of PP2A, which contributes to mGluR5 activation of MEK1/2 and ERK1/2.  相似文献   
92.
Chemokines and chemokine receptors are required for T cell trafficking and migration. Recent evidence shows that sphingosine 1-phosphate (S1P) and S1PRs are also important for some aspects of T cell migration, but how these two important receptor-ligand systems are integrated and coregulated is not known. In this study, we have investigated CCL19-CCR7 and CXCL12-CXCR4-driven migration of both splenic and peripheral lymph node (PLN) nonactivated and naive T cells, and used both S1P and the S1PR ligand, FTY720, to probe these interactions. The results demonstrate that splenic T cell migration to CCL19 or CXCL12 is enhanced by, but does not require, S1PR stimulation. In contrast, PLN T cell migration to CXCL12, but not CCL19, requires both chemokine and S1PR stimulation, and the requirement for dual receptor stimulation is particularly important for steps involving transendothelial migration. The results also demonstrate that: 1) splenic and PLN nonactivated and naive T cells use different molecular migration mechanisms; 2) CCR7 and CXCR4 stimulation engage different migration mechanisms; and 3) S1P and FTY720 have distinct S1PR agonist and antagonist properties. The results have important implications for understanding naive T cell entry into and egress from peripheral lymphoid organs, and we present a model for how S1P and chemokine receptor signaling may be integrated within a T cell.  相似文献   
93.
Because of the complement system's involvement in many human diseases and potential complications associated with its systemic blockade, site-specific regulation of this effector system is an attractive concept. We report on further developments of such an approach using a single-chain Ab fragment as a vehicle to deliver complement regulatory proteins to a defined cell type. In a model system in which RBCs deficient in complement receptor 1-related gene/protein y (Crry) are rapidly cleared after injection into wild-type animals by a complement-dependent mechanism, we selectively reconstituted these cells with N- and C-terminally targeted recombinant forms of Crry. Transfusion of Crry-coated knockout RBCs into C57BL/6 mice extended their in vivo half-life from <5 min to approximately 2 days. Maintenance of protective levels of Crry (by a combined treatment of donor and recipient RBCs) led to nearly normal RBC survival. Uniform in vitro and in vivo coating of the RBCs and the more efficient complement inhibitory capacity of C-terminally tagged Crry were other interesting features of this experimental system. These results suggest the possibility of using the single-chain Ab fragment-mediated targeting concept of complement regulatory proteins to restrict complement inhibition to the site of its excessive activation.  相似文献   
94.
95.
96.
SecA is the ATPase that provides energy for translocation of precursor polypeptides through the SecYEG translocon in Escherichia coli during protein export. We showed previously that when SecA receives the precursor from SecB, the ternary complex is fully active only when two protomers of SecA are bound. Here we used variants of SecA and of SecB that populate complexes containing two protomers of SecA to different degrees to examine both the hydrolysis of ATP and the translocation of polypeptides. We conclude that the low activity of the complexes with only one protomer is the result of a low efficiency of coupling between ATP hydrolysis and translocation.  相似文献   
97.
Phosphatidylinositol 4,5-bisphosphate (PIP2) has many essential functions and its homeostasis is highly regulated. We previously found that hypertonic stress increases PIP2 by selectively activating the β isoform of the type I phosphatidylinositol phosphate 5-kinase (PIP5Kβ) through Ser/Thr dephosphorylation and promoting its translocation to the plasma membrane. Here we report that hydrogen peroxide (H2O2) also induces PIP5Kβ Ser/Thr dephosphorylation, but it has the opposite effect on PIP2 homeostasis, PIP5Kβ function, and the actin cytoskeleton. Brief H2O2 treatments decrease cellular PIP2 in a PIP5Kβ-dependent manner. PIP5Kβ is tyrosine phosphorylated, dissociates from the plasma membrane, and has decreased lipid kinase activity. In contrast, the other two PIP5K isoforms are not inhibited by H2O2. We identified spleen tyrosine kinase (Syk), which is activated by oxidants, as a candidate PIP5Kβ kinase in this pathway, and mapped the oxidant-sensitive tyrosine phosphorylation site to residue 105. The PIP5KβY105E phosphomimetic is catalytically inactive and cytosolic, whereas the Y105F non-phosphorylatable mutant has higher intrinsic lipid kinase activity and is much more membrane associated than wild type PIP5Kβ. These results suggest that during oxidative stress, as modeled by H2O2 treatment, Syk-dependent tyrosine phosphorylation of PIP5Kβ is the dominant post-translational modification that is responsible for the decrease in cellular PIP2.Oxygen-derived free radicals are by-products of metabolic reactions in eukaryotic cells. Reactive oxygen species (ROS)4 act as endogenous signaling molecules (1). However, excessive ROS production leads to deleterious effects on cellular homeostasis by inducing DNA damage, lipid/protein oxidation, and ultimately apoptosis or necrosis. Acute and chronic oxidative stress have been implicated in the pathophysiology of shock and sepsis associated with traumatic injuries such as massive thermal burn (24), Alzheimer disease, diabetes mellitus, and atherosclerosis (57).Phosphatidylinositol 4,5-bisphosphate (PIP2) has emerged as an integral component of the stress response. This is concordant with its essential role in the regulation of the actin cytoskeleton, endocytosis, exocytosis, plasma membrane (PM) scaffolding, and ion channels/transporter (8). PIP2 is also essential for InsP3-mediated Ca2+ generation, protein kinase C activation, and PIP3 generation (9, 10). PIP2 synthesis is depressed in the heart sarcolemma during oxidative stress, suggesting that PIP2 depletion may contribute to cardiac dysfunctions (11). Recently, Divecha and colleagues (12) reported that prolonged (many hours) treatment of HeLa cells with hydrogen peroxide (H2O2) induces apoptosis by depleting PIP2. Apoptosis can be attenuated by overexpression of a type I phosphatidylinositol-4-phosphate 5-kinase (PIP5Kβ). We found using isoform-specific PIP5K knockdown by RNA interference (RNAi) that PIP5Kβ synthesizes a large fraction of the ambient PIP2 pool in HeLa cells (13). Hypertonicity is another type of stress that increases PIP2 and may be protective against cell injury (14, 15) by activating PIP5Kβ through Ser/Thr dephosphorylation (16). This effect is specific for PIP5Kβ, because depletion of the other two PIP5K isoforms (α and γ) individually does not substantially abrogate the hypertonicity induced PIP2 increase.In the present study, we used H2O2 to model oxidative stress in tissue culture cells, and examined the effect on PIP2 homeostasis and PIP5Kβ function. We found that a brief H2O2 treatment decreases cellular PIP2 and inactivates PIP5Kβ through tyrosine phosphorylation. We identified spleen tyrosine kinase (Syk) as a candidate kinase in this pathway. Syk is a member of the Syk/Zap-70 nonreceptor tyrosine kinase family that is abundant in hematopoietic cells (17) but is also found in nonhematopoietic lineages (18), including HeLa and COS cells (19, 20).  相似文献   
98.
In order to explore the mode of inheritance of esophageal cancer in a moderately high-incidence area of northern China, we conducted a pedigree survey on 225 patients affected by esophageal cancer in Yangquan, Shanxi Province. Segregation analysis was performed using the REGTL program of S.A.G.E. The results showed that Mendelian autosomal recessive inheritance of a major gene that influences susceptibility to esophageal cancer provided the best fit to the data. In the best-fitting recessive model, the frequency of the disease allele was.2039. There was a significant sex effect on susceptibility to the disease. The maximum cumulative probability of esophageal cancer among males with the AA genotype was 100%, but, among females, it was 63.5%. The mean age at onset for both men and women was 62 years. The age-dependent penetrances for males with the AA genotype by the ages of 60 and 80 years were 41.6% and 95.2%, respectively, whereas, for females, they were 26.4% and 60.5%, respectively. Incorporating environmental risk factors-such as cigarette smoking, pipe smoking, alcohol drinking, eating hot food, and eating pickled vegetables-into the models did not provide significant improvement of the fit of the models to these data. The results suggest a major locus underlying susceptibility to esophageal cancer with sex-specific penetrance.  相似文献   
99.
Ye X  Ji C  Zhou C  Zeng L  Gu S  Ying K  Xie Y  Mao Y 《Molecular biology reports》2004,31(3):191-195
Mitochondrial fatty acid -oxidation is an important energy resource for many mammal tissues. Acyl-CoA dehydrogenases (ACADs) are a family of flavoproteins that are involved in the -oxidation of the fatty acyl-CoA derivatives. Deficiency of these ACADs can cause metabolic disorders including muscle fatigue, hypoglycaemia, hepatic lipidosis and so on. By large scale sequencing, we identified a cDNA sequence of 3960 base pairs with a typical acyl-CoA dehydrogenase function domain. RT-PCR result shows that it is widely expressed in human tissues, especially high in liver, kidney, pancreas and spleen. It is hypothesized that this is a novel member of ACADs family. Abbreviations: ACADs – acyl-CoA dehydrogenases, FAD – flavinadenine dinucleotide, SCAD – short-chain acyl-CoA dehydrogenase,MCAD – medium-chain acyl-CoA dehydrogenase, LCAD – long-chain acyl-CoAdehydrogenase, VLCAD – very long- chain acyl-CoA dehydrogenase, IVD –isocalery-CoA dehydrogenase, SBCAD – short/branched chain acyl-CoAdehydrogenase, GCD – glutaryl- CoA dehydrogenase, ETF – electron transferflavoprotein, ACAD8 – acyl-CoA dehydrogenase 8, ACAD9 – acyl-CoAdehydrogenase 9, ACAD10 – acyl-CoA dehydrogenase 10.  相似文献   
100.
Wang  Yue  Su  Shengnan  Chen  Guogang  Mao  Huijuan  Jiang  Ying 《Journal of Plant Growth Regulation》2021,40(3):1152-1165

Cuticular wax is an important factor that affects storage quality of fruits and vegetables. Previous studies have shown that cuticular wax of pears changes significantly during storage, whereas there are few studies on the effects of different storage methods on the wax changes and the relationship with storage quality. Cuticular wax of Korla pear stored using different methods, was measured to analyze its total wax content, chemical compositions and their relationship with storage quality. At the end of storage, the highest cuticular wax content was observed in controlled atmosphere (CA) storage and the lowest in room temperature storage. The substances of the primary components with higher contents were nonacosane, (E, E)-ɑ-farnesene, dodecan-1-ol, 1,1-dimethoxynonane, nonanal, palmitic acid, and oleic acid. Total wax content, olefins and fatty acids were most significantly with the storage quality, followed by alkanes and esters. Moreover, total wax content, wax composition and weight loss were closely related to postharvest senescence. Overall, an understanding of variations in the cuticular wax under different storage methods could provide theoretical basis for further study on the storage and preservation technology of pears.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号