首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4853篇
  免费   329篇
  国内免费   337篇
  5519篇
  2024年   14篇
  2023年   75篇
  2022年   166篇
  2021年   247篇
  2020年   169篇
  2019年   190篇
  2018年   200篇
  2017年   146篇
  2016年   215篇
  2015年   274篇
  2014年   352篇
  2013年   382篇
  2012年   424篇
  2011年   362篇
  2010年   235篇
  2009年   216篇
  2008年   239篇
  2007年   174篇
  2006年   163篇
  2005年   165篇
  2004年   157篇
  2003年   147篇
  2002年   106篇
  2001年   119篇
  2000年   83篇
  1999年   97篇
  1998年   46篇
  1997年   35篇
  1996年   36篇
  1995年   34篇
  1994年   30篇
  1993年   18篇
  1992年   28篇
  1991年   22篇
  1990年   31篇
  1989年   8篇
  1988年   17篇
  1987年   13篇
  1986年   9篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   7篇
  1981年   5篇
  1980年   6篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1975年   6篇
  1974年   3篇
排序方式: 共有5519条查询结果,搜索用时 15 毫秒
61.
Transforming growth factor-beta1 (TGF-beta1) is a key mediator in tissue repair and fibrosis. Using small interference RNA (siRNA), the role of Smad2 and Smad3 in TGF-beta stimulation of human lung fibroblast contraction of collagenous matrix and induction of alpha-SMA and the role of alpha-SMA in contraction were assessed. HFL-1 cells were transfected with Smad2, Smad3 or control-siRNA, and cultured in floating Type I collagen gels +/- -TGF-beta1. TGF-beta1 augmented gel contraction in Smad2-siRNA- and control-siRNA-treated cells, but had no effect in Smad3-siRNA-treated cells. Similarly, TGF-beta1 upregulated alpha-SMA in Smad2-siRNA- and control-siRNA-treated cells, but had no effect on Smad3-siRNA-treated cells. Alpha-SMA-siRNA-treated cells did not contact the collagen gels with or without TGF-beta1, suggesting alpha-SMA is required for gel contraction. Thus, Smad3 mediates TGF-beta1-induced contraction and alpha-SMA induction in human lung fibroblasts. Smad3, therefore, could be a target for blocking contraction of human fibrotic tissue induced by TGF-beta1.  相似文献   
62.
The hydrothermal reaction of La2O3 and Pr2O3 with pyridine-2,6-dicarboxylic acid (H2pydc), CuO, and H2O with a mole ratio of 1:2:4:300 resulted in the formation of two polymeric Cu(II)-Ln(III) complexes, [{Ln4Cu2(pydc)8(H2O)8} · 18H2O]n (Ln = La (1); Pr (2)). 1 and 2 are isomorphous and crystallize in monoclinic space group C2/c. Complexes 1 and 2 have one-dimensional infinite chains with “∞” shape. The 1D chains are linked by the hydrogen bonds and π?π stacking interactions to form layer structures which are further linked by the hydrogen bonds and π?π stacking interactions to form the three-dimensional (3D) structures with nanoscale porosities. Temperature-dependent magnetic susceptibilities and the thermal stabilities of complexes 1 and 2 were studied.  相似文献   
63.
Macrophage migration inhibitory factor (MIF) is a significant regulator of inflammatory diseases, and local inflammation plays an important role in the aseptic loosening of failed total hip arthroplasty (THA). A high-level MIF expression was found in the interfacial membrane around implants. However, the cause of increased MIF expression and the action of MIF in the process of aseptic-loosening implant is still unknown. This study is to investigate MIF expression and its upregulating effect on matrix metalloproteinases (MMPs) expression in the particles-stimulated air pouches in mice that appear to closely resemble the interfacial membranes. A total of 48 murine air pouches were divided into four groups, and were injected with PBS, titanium particles suspensions, titanium particles suspensions with neutralizing antibody of MIF, and titanium particles suspensions with normal IgG, respectively. Histological and cytokine responses were evaluated. The inflammatory reaction of air pouch membranes induced by titanium particles was significantly suppressed by neutralizing antibody. The levels of MIF protein and mRNA were significantly increased in the titanium particles-stimulated air pouch membranes compared with the control groups. So were the levels of MMP13 protein and mRNA. However, the levels of MMP13 protein and mRNA were significantly reduced by neutralizing antibody. Our study demonstrates that titanium particles can cause the air pouch membranes to increase the expression of MIF, which upregulates the production of MMP13 and induces inflammatory reaction in vivo. The results indicate that MIF may play an important role in the process of aseptic-loosening implants after THA.  相似文献   
64.
Oral leukoplakia (OL) is the most common premalignancy in the oral cavity and can progress to oral squamous cell carcinoma (OSCC). SMAD4 is a tumor suppressor implicated in multiple cancer types including OSCC. To assess the role of SMAD4 in oral leukoplakia malignant transformation, the authors investigated SMAD4 expression patterns in OL and OSCC using a highly specific antibody and correlated the patterns with the risk of malignant transformation oral leukoplakia. Immunohistochemistry and a quantitative imaging system were used to measure SMAD4 expression in OL from 88 OL patients, including 22 who later went through malignant transformation, and their OSCC counterpart. Forty-three (48.9%) of the 88 OL patients had strong SMAD4 expression. SMAD4 expression had no significant correlation with patients'' clinicopathological parameters. Interestingly, 17 (39.5%) of the 43 OL lesions with strong SMAD4 expression went through malignant transformation whereas only 5 (11.1%) of the 45 OL lesions with weak SMAD4 expression did so (p = 0.002). The SMAD4 expression in OL was much higher than that in their OSCC counterpart. Kaplan-Meier analysis revealed that the combination of SMAD4 expression and histological grade of dysplasia (p = 0.007) is a better predictor for the malignant transformation of oral leukoplakia. In the multivariate analysis, both SMAD4 expression and grade of dysplasia were identified as independent factors for OL malignant transformation risk (p = 0.013 and 0.021, respectively). It was concluded that high SMAD4 expression may be indicative of an early carcinogenic process in OL and serve as an independent biomarker in assessing malignant transformation risk in patients with OL, and the combination of SMAD4 expression and histological grade of dysplasia is a better predictor for the malignant transformation of oral leukoplakia.  相似文献   
65.
66.
Early detection of resistance to platinum-based therapy is critical for improving the treatment of ovarian cancers. We have previously found that increased expression of annexin A3 is a mechanism for platinum resistance in ovarian cancer cells. Here we demonstrate that annexin A3 can be detected in the culture medium of ovarian cancer cells, particularly these cells that express high levels of annexin A3. Levels of annexin A3 were then determined in sera from ovarian cancer patients using an enzyme-linked immunosorbent assay. Compared with those from normal donors, sera from ovarian cancer patients contain significantly higher levels of annexin A3. Furthermore, serum levels of annexin A3 were significantly higher in platinum-resistant patients than in platinum-sensitive patients. To gain insight into the mechanism of secretion, the ovarian cancer cell lines were examined using both transmission electron microscopy and immunoelectron microscopy. Compared with parent cells, there are significantly more vesicles in the cytoplasm of ovarian cancer cells that express high levels of annexin A3, and at least some vesicles are annexin A3-positive. Moreover, some vesicles appear to be fused with the cell membrane, suggesting that annexin A3 secretion may be associated with exocytosis and the release of exosomes. This is supported by our observation that ovarian cancer cells expressing higher levels of annexin A3 released increased numbers of exosomes. Furthermore, annexin A3 can be detected in exosomes released from cisplatin-resistant cells (SKOV3/Cis) by immunoblotting and immunoelectron microscopy.  相似文献   
67.
Recently, it has been suggested that C2ORF40 is a candidate tumor suppressor gene in breast cancer. However, the mechanism for reduced expression of C2ORF40 and its functional role in breast cancers remain unclear. Here we show that C2ORF40 is frequently silenced in human primary breast cancers and cell lines through promoter hypermethylation. C2ORF40 mRNA level is significantly associated with patient disease-free survival and distant cancer metastasis. Overexpression of C2ORF40 inhibits breast cancer cell proliferation, migration and invasion. By contrast, silencing C2ORF40 expression promotes these biological phenotypes. Bioinformatics and FACS analysis reveal C2ORF40 functions at G2/M phase by downregulation of mitotic genes expression, including UBE2C. Our results suggest that C2ORF40 acts as a tumor suppressor gene in breast cancer pathogenesis and progression and is a candidate prognostic marker for this disease.  相似文献   
68.

Background

Neuroinflammation plays an important role in the pathogenesis of Parkinson’s disease (PD), inducing and accelerating dopaminergic (DA) neuron loss. Autophagy, a critical mechanism for clearing misfolded or aggregated proteins such as α-synuclein (α-SYN), may affect DA neuron survival in the midbrain. However, whether autophagy contributes to neuroinflammation-induced toxicity in DA neurons remains unknown.

Results

Intraperitoneal injection of lipopolysaccharide (LPS, 5 mg/kg) into young (3-month-old) and aged (16-month-old) male C57BL/6J mice was observed to cause persistent neuroinflammation that was associated with a delayed and progressive loss of DA neurons and accumulation of α-SYN in the midbrain. The autophagic substrate-p62 (SQSTM1) persistently increased, whereas LC3-II and HDAC6 exhibited early increases followed by a decline. In vitro studies further demonstrated that TNF-α induced cell death in PC12 cells. Moreover, a sublethal dose of TNF-α (50 ng/ml) increased the expression of LC3-II, p62, and α-SYN, implying that TNF-α triggered autophagic impairment in cells.

Conclusion

Neuroinflammation may cause autophagic impairment, which could in turn result in DA neuron degeneration in midbrain.  相似文献   
69.
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.  相似文献   
70.
Rab proteins are small-molecular-weight GTPases that control vesicular trafficking in eukaryotic cells. During the large-scale sequencing analysis of a human fetal brain cDNA library, we isolated a cDNA clone encoding a novel Rab protein, which showed 74.2% identity with previously isolated Rab39A at the amino acid level. RAB39B was expressed in a variety of human tissues and located in human chromosome Xq28. It consisted of two exons spanning 3764 bp of human genomic DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号