全文获取类型
收费全文 | 416篇 |
免费 | 38篇 |
专业分类
454篇 |
出版年
2023年 | 2篇 |
2022年 | 4篇 |
2021年 | 9篇 |
2020年 | 5篇 |
2019年 | 5篇 |
2018年 | 13篇 |
2017年 | 9篇 |
2016年 | 17篇 |
2015年 | 17篇 |
2014年 | 16篇 |
2013年 | 29篇 |
2012年 | 32篇 |
2011年 | 39篇 |
2010年 | 23篇 |
2009年 | 20篇 |
2008年 | 28篇 |
2007年 | 15篇 |
2006年 | 21篇 |
2005年 | 10篇 |
2004年 | 18篇 |
2003年 | 15篇 |
2002年 | 15篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 5篇 |
1998年 | 2篇 |
1997年 | 6篇 |
1996年 | 3篇 |
1995年 | 3篇 |
1994年 | 9篇 |
1993年 | 5篇 |
1992年 | 5篇 |
1989年 | 3篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 3篇 |
1983年 | 2篇 |
1982年 | 2篇 |
1981年 | 3篇 |
1978年 | 3篇 |
1976年 | 1篇 |
1973年 | 3篇 |
1972年 | 4篇 |
1971年 | 2篇 |
1970年 | 1篇 |
1969年 | 3篇 |
1967年 | 1篇 |
1959年 | 1篇 |
排序方式: 共有454条查询结果,搜索用时 15 毫秒
51.
Liisa Carlson E. Brje Lindstrm Kevin B. Hallberg Olli H. Tuovinen 《Applied microbiology》1992,58(3):1046-1049
Bacterial leaching of an As-containing pyrite concentrate produced acidic (pH < 1) leachates. During the leaching, the bacteria solubilized both As and Fe, and these two elements were distributed in solution-phase and solid-phase products. Jarosite and scorodite were the exclusive crystalline products in precipitate samples from the bacterial leaching of the sulfide concentrate. 相似文献
52.
Kärkönen A Koutaniemi S Mustonen M Syrjänen K Brunow G Kilpeläinen I Teeri TH Simola LK 《Physiologia plantarum》2002,114(3):343-353
Activity of a number of enzymes related to lignin formation was measured in a Picea abies (L) Karsten suspension culture that is able to produce native-like lignin into the nutrient medium. This cell culture is an attractive model for studying lignin formation, as the process takes place independently of the complex macromolecular matrix of the native apoplast. Suspension culture proteins were fractionated into soluble cellular proteins, ionically and covalently bound cell wall proteins and nutrient medium proteins. The nutrient medium contained up to 5.3% of total coniferyl alcohol peroxidase (EC 1.11.1.7) activity and a significant NADH oxidase activity that is suggested to be responsible for hydrogen peroxide (H2O2) production. There also existed some malate dehydrogenase (EC 1.1.1.37) activity in the apoplast of suspension culture cells (in ionically and covalently bound cell wall protein fractions), possibly for the regeneration of NADH that is needed for peroxidase-catalysed H2O2 production. However, there is no proof of the existence of NADH in the apoplast. Nutrient medium peroxidases could be classified into acidic, slightly basic and highly basic isoenzyme groups by isoelectric focusing. Only acidic peroxidases were found in the covalently bound cell wall protein fraction. Several peroxidase isoenzymes across the whole pI range were detected in the protein fraction ionically bound to cell walls and in the soluble cellular protein fraction. One laccase-like isoenzyme with pI of approximately 8.5 was found in the nutrient medium that was able to form dehydrogenation polymer from coniferyl alcohol in the absence of H2O2. The total activity of this oxidase towards coniferyl alcohol was, however, several orders of magnitude smaller than that of peroxidases in vitro. According to 2D 1H-13C correlation NMR spectra, most of the abundant structural units of native lignin and released suspension culture lignin are present in the oxidase produced dehydrogenation polymer but in somewhat different amounts compared to peroxidase derived synthetic lignin preparations. A coniferin beta-glucosidase (EC 3.2.1.21) was observed to be secreted into the culture medium. 相似文献
53.
Vacuole membrane protein 1 marks endoplasmic reticulum subdomains enriched in phospholipid synthesizing enzymes and is required for phosphoinositide distribution 下载免费PDF全文
Luis‐Carlos Tábara Juan‐Jesús Vicente Joanna Biazik Eeva‐Liisa Eskelinen Olivier Vincent Ricardo Escalante 《Traffic (Copenhagen, Denmark)》2018,19(8):624-638
The multispanning membrane protein vacuole membrane protein 1 (VMP1) marks and regulates endoplasmic reticulum (ER)‐domains associated with diverse ER‐organelle membrane contact sites. A proportion of these domains associate with endosomes during their maturation and remodeling. We found that these VMP1 domains are enriched in choline/ethanolamine phosphotransferase and phosphatidylinositol synthase (PIS1), 2 ER enzymes required for the synthesis of various phospholipids. Interestingly, the lack of VMP1 impairs the formation of PIS1‐enriched ER domains, suggesting a role in the distribution of phosphoinositides. In fact, depletion of VMP1 alters the distribution of PtdIns4P and proteins involved in the trafficking of PtdIns4P. Consistently, in these conditions, defects were observed in endosome trafficking and maturation as well as in Golgi morphology. We propose that VMP1 regulates the formation of ER domains enriched in lipid synthesizing enzymes. These domains might be necessary for efficient distribution of PtdIns4P and perhaps other lipid species. These findings, along with previous reports that involved VMP1 in regulating PtdIns3P during autophagy, expand the role of VMP1 in lipid trafficking and explain the pleiotropic effects observed in VMP1‐deficient mammalian cells and other model systems. 相似文献
54.
55.
56.
57.
Background
Thermostable enzymes have several benefits in lignocellulose processing. In particular, they potentially allow the use of increased substrate concentrations (because the substrate viscosity decreases as the temperature increases), resulting in improved product yields and reduced capital and processing costs. A short pre-hydrolysis step at an elevated temperature using thermostable enzymes aimed at rapid liquefaction of the feedstock is seen as an attractive way to overcome the technical problems (such as poor mixing and mass transfer properties) connected with high initial solid loadings in the lignocellulose to ethanol process. 相似文献58.
Host resistance and pathogen aggressiveness are key determinants of coinfection in the wild 下载免费PDF全文
Hanna Susi Anna‐Liisa Laine 《Evolution; international journal of organic evolution》2017,71(8):2110-2119
Coinfection, whereby the same host is infected by more than one pathogen strain, may favor faster host exploitation rates as strains compete for the same limited resources. Hence, coinfection is expected to have major consequences for pathogen evolution, virulence, and epidemiology. Theory predicts genetic variation in host resistance and pathogen infectivity to play a key role in how coinfections are formed. The limited number of studies available has demonstrated coinfection to be a common phenomenon, but little is known about how coinfection varies in space, and what its determinants are. Our aim is to understand how variation in host resistance and pathogen infectivity and aggressiveness contribute to how coinfections are formed in the interaction between fungal pathogen Podosphaera plantaginis and Plantago lanceolata. Our phenotyping study reveals that more aggressive strains are more likely to form coinfections than less aggressive strains in the natural populations. In the natural populations most of the variation in coinfection is found at the individual plant level, and results from a common garden study confirm the prevalence of coinfection to vary significantly among host genotypes. These results show that genetic variation in both the host and pathogen populations are key determinants of coinfection in the wild. 相似文献
59.
Ace North Juho Pennanen Otso Ovaskainen Anna‐Liisa Laine 《Evolution; international journal of organic evolution》2011,65(1):79-89
In spatially heterogeneous environments, the processes of gene flow, mutation, and sexual reproduction generate local genetic variation and thus provide material for local adaptation. On the other hand, these processes interchange maladapted for adapted genes and so, in each case, the net influence may be to reduce local adaptation. Previous work has indicated that this is the case in stable populations, yet it is less clear how the factors play out during population growth, and in the face of temporal environmental stochasticity. We address this issue with a spatially explicit, stochastic model. We find that dispersal, mutation, and sexual reproduction can all accelerate local adaptation in growing populations, although their respective roles may depend on the genetic make‐up of the founding population. All three processes reduce local adaptation, however, in the long term, that is when population growth becomes balanced by density‐dependent competition. These relationships are qualitatively maintained, although quantitatively reduced, if the resources are locally ephemeral. Our results suggest that species with high levels of local adaptation within their ranges may not be the same species that harbor potential for rapid local adaptation during population expansion. 相似文献
60.
The functional characterization of genes and their gene products is the main challenge of the genomic era. Examining interaction information for every gene product is a direct way to assemble the jigsaw puzzle of proteins into a functional map. Here we demonstrate a method in which the information gained from pull-down experiments, in which single proteins act as baits to detect interactions with other proteins, is maximized by using a network-based strategy to select the baits. Because of the scale-free distribution of protein interaction networks, we were able to obtain fast coverage by focusing on highly connected nodes (hubs) first. Unfortunately, locating hubs requires prior global information about the network one is trying to unravel. Here, we present an optimized 'pay-as-you-go' strategy that identifies highly connected nodes using only local information that is collected as successive pull-down experiments are performed. Using this strategy, we estimate that 90% of the human interactome can be covered by 10,000 pull-down experiments, with 50% of the interactions confirmed by reciprocal pull-down experiments. 相似文献