首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   411篇
  免费   38篇
  2023年   2篇
  2022年   4篇
  2021年   9篇
  2020年   5篇
  2019年   5篇
  2018年   13篇
  2017年   9篇
  2016年   17篇
  2015年   17篇
  2014年   16篇
  2013年   29篇
  2012年   31篇
  2011年   39篇
  2010年   23篇
  2009年   20篇
  2008年   27篇
  2007年   15篇
  2006年   21篇
  2005年   10篇
  2004年   18篇
  2003年   15篇
  2002年   15篇
  2001年   2篇
  2000年   2篇
  1999年   5篇
  1998年   2篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   9篇
  1993年   5篇
  1992年   4篇
  1989年   3篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1981年   3篇
  1978年   3篇
  1976年   1篇
  1973年   3篇
  1972年   4篇
  1971年   2篇
  1970年   1篇
  1969年   3篇
  1967年   1篇
  1959年   1篇
排序方式: 共有449条查询结果,搜索用时 15 毫秒
291.
Local adaptation is central for creating and maintaining spatial variation in plant-herbivore interactions. Short-lived insect herbivores feeding on long-lived plants are likely to adapt to their local host plants, because of their short generation time, poor dispersal, and geographically varying selection due to variation in plant defences. In a reciprocal feeding trial, we investigated the impact of geographic variation in plant secondary chemistry of a long-lived plant, Vincetoxicum hirundinaria, on among-population variation in local adaptation of a specialist leaf-feeding herbivore, Abrostola asclepiadis. The occurrence and degree of local adaptation varied among populations. This variation correlated with qualitative and quantitative differences in plant chemistry among the plant populations. These findings provide insights into the mechanisms driving variation in local adaptation in this specialized plant-herbivore interaction.  相似文献   
292.
Excitation–emission fluorescence matrices of phytoplankton communities were simulated from laboratory-grown algae and cyanobacteria cultures, to define the optical configurations of theoretical fluorometers that either minimize or maximize the representation of these phytoplankton groups in community variable fluorescence measurements. Excitation sources that match the photosystem II (PSII) action spectrum of cyanobacteria do not necessarily lead to equal representation of cyanobacteria in community fluorescence. In communities with an equal share of algae and cyanobacteria, inducible PSII fluorescence in algae can be retrieved from community fluorescence under blue excitation (450–470 nm) with high accuracy (R 2 = 1.00). The highest correlation between community and cyanobacterial variable fluorescence is obtained under orange-red excitation in the 590–650 nm range (R 2 = 0.54). Gaussian band decomposition reveals that in the presence of cyanobacteria, the emission detection slit must be narrow (up to 10 nm) and centred on PSII chlorophyll-a emission (~683 nm) to avoid severe dampening of the signal by weakly variable phycobilisomal fluorescence and non-variable photosystem I fluorescence. When these optimizations of the optical configuration of the fluorometer are followed, both cyanobacterial and algal cultures in nutrient replete exponential growth exhibit values of the maximum quantum yield of charge separation in PSII in the range of 0.65–0.7.  相似文献   
293.
Genetic engineering of plant resistance characteristics against fungi may unintentionally influence traits that are important for plant–herbivore interactions. We studied the palatability of transgenic birch (Betula pendula), aspen (Populus tremula) and hybrid aspen (P. tremula x tremuloides) genetically modified with the aim to improve fungal disease resistance, to selective mammalian herbivores in cafeteria tests. Roe deer (Capreolus capreolus) were fed with transgenic birch carrying a sugar beet chitinase IV gene. In the experiment with roe deer, none of the six transgenic birch lines differed significantly from the wild-type control in the proportion of consumed plant biomass. Correlation analyses suggested that sugar content did not guide the feeding preferences of roe deer but revealed a positive correlation between starch content and proportion of mass consumed. However, the variation in starch content could not be related to the level of transgene expression. Mountain hares (Lepus timidus) were fed with plant material from chitinase transgenic birch and aspen and hybrid aspen that carried a pinosylvin synthase gene from Scots pine. One transgenic birch line was significantly less palatable to hares than the wild-type control. The results of this study suggest that plant genotype may be related to the palatability of plant material when transgenic and wild-type woody plant material is used as winter food for hares. The results of this case study did not reveal changes in the palatability of the studied transgenic lines that could be readily related to the functioning of the used transgenes.  相似文献   
294.
Personality traits are basic dimensions of behavioral variation, and twin, family, and adoption studies show that around 30% of the between‐individual variation is due to genetic variation. There is rapidly growing interest in understanding the evolutionary basis of this genetic variation. Several evolutionary mechanisms could explain how genetic variation is maintained in traits, and each of these makes predictions in terms of the relative contribution of rare and common genetic variants to personality variation, the magnitude of nonadditive genetic influences, and whether personality is affected by inbreeding. Using genome‐wide single nucleotide polymorphism (SNP) data from > 8000 individuals, we estimated that little variation in the Cloninger personality dimensions (7.2% on average) is due to the combined effect of common, additive genetic variants across the genome, suggesting that most heritable variation in personality is due to rare variant effects and/or a combination of dominance and epistasis. Furthermore, higher levels of inbreeding were associated with less socially desirable personality trait levels in three of the four personality dimensions. These findings are consistent with genetic variation in personality traits having been maintained by mutation–selection balance.  相似文献   
295.
Vertebrate Hox genes regulate many aspects of embryonic body plan development and patterning. In particular, Hox genes have been shown to regulate regional patterning of the axial and appendicular skeleton and of the central nervous system. We have identified patterning defects resulting from the targeted mutation of Hoxc10, a member of the Hox10 paralogous family. Hoxc10 mutant mice have skeletal transformations in thoracic, lumbar, and sacral vertebrae and in the pelvis, along with alterations in the bones and ligaments of the hindlimbs. These results suggest that Hoxc10, along with other members of the Hox10 paralogous gene family, regulates vertebral identity at the transition from thoracic to lumbar and lumbar to sacral regions. Our results also suggest a general role for Hoxc10 in regulating chondrogenesis and osteogenesis in the hindlimb, along with a specific role in shaping femoral architecture. In addition, mutant mice have a reduction in lumbar motor neurons and a change in locomotor behavior. These results suggest a role for Hoxc10 in generating or maintaining the normal complement of lumbar motor neurons.  相似文献   
296.
297.
Serine/threonine kinase Akt is a downstream effector protein of phosphatidylinositol-3-kinase (PI-3K). Many integrins can function as positive modulators of the PI-3K/Akt pathway. Integrin alpha 2 beta 1 is a collagen receptor that has been shown to induce specific signals distinct from those activated by other integrins. Here, we found that, in contrast what was found for cells adherent to fibronectin, alpha 2 beta 1-mediated cell adhesion to collagen leads to dephosphorylation of Akt and glycogen synthase kinase 3 beta (GSK3 beta) and concomitantly to the induction of protein serine/threonine phosphatase 2A (PP2A) activity. PP2A activation can be inhibited by mutation in the alpha 2 cytoplasmic domain and by a function-blocking anti-alpha 2 antibody. Akt can be coprecipitated with PP2A, and coexpression of Akt with PP2Ac (catalytic subunit) inhibits Akt kinase activity. Integrin alpha 2 beta 1-related activation of PP2A is dependent on Cdc42. These results indicate that cell adhesion to collagen modulates Akt activity via the alpha 2 beta 1-induced activation of PP2A.  相似文献   
298.
299.
A Norway spruce (Picea abies) tissue culture line that produces extracellular lignin into the culture medium has been used as a model system to study the enzymes involved in lignin polymerization. We report here the purification of two highly basic culture medium peroxidases, PAPX4 and PAPX5, and isolation of the corresponding cDNAs. Both isoforms had high affinity to monolignols with apparent Km values in μM range. PAPX4 favoured coniferyl alcohol with a six-fold higher catalytic efficiency (Vmax/Km) and PAPX5 p-coumaryl alcohol with a two-fold higher catalytic efficiency as compared to the other monolignol. Thus coniferyl and p-coumaryl alcohol could be preferentially oxidized by different peroxidase isoforms in this suspension culture, which may reflect a control mechanism for the incorporation of different monolignols into the cell wall. Dehydrogenation polymers produced by the isoforms were structurally similar. All differed from the released suspension culture lignin and milled wood lignin, in accordance with previous observations on the major effects that e.g. cell wall context, rate of monolignol feeding and other proteins have on polymerisation. Amino acid residues shown to be involved in monolignol binding in the lignification-related Arabidopsis ATPA2 peroxidase were nearly identical in PAPX4 and PAPX5. This similarity extended to other peroxidases involved in lignification, suggesting that a preferential structural organization of the substrate access channel for monolignol oxidation might exist in both angiosperms and gymnosperms.  相似文献   
300.
Meiotic recombination hot spots and human DNA diversity   总被引:7,自引:0,他引:7  
Meiotic recombination plays a key role in the maintenance of sequence diversity in the human genome. However, little is known about the fine-scale distribution and processes of recombination in human chromosomes, or how these impact on patterns of human diversity. We have therefore developed sperm typing systems that allow human recombination to be analysed at very high resolution. The emerging picture is that human crossovers are far from randomly distributed but instead are targeted into very narrow hot spots that can profoundly influence patterns of haplotype diversity in the human genome. These hot spots provide fundamental information on processes of human crossover and gene conversion, as well as evidence that they can violate basic rules of Mendelian inheritance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号