首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   67篇
  2022年   6篇
  2021年   20篇
  2020年   11篇
  2019年   9篇
  2018年   18篇
  2017年   21篇
  2016年   17篇
  2015年   34篇
  2014年   27篇
  2013年   55篇
  2012年   62篇
  2011年   58篇
  2010年   44篇
  2009年   27篇
  2008年   30篇
  2007年   36篇
  2006年   38篇
  2005年   40篇
  2004年   30篇
  2003年   33篇
  2002年   27篇
  2001年   17篇
  2000年   9篇
  1999年   18篇
  1998年   9篇
  1997年   7篇
  1996年   6篇
  1995年   7篇
  1994年   5篇
  1993年   9篇
  1992年   12篇
  1991年   12篇
  1990年   13篇
  1989年   14篇
  1988年   4篇
  1986年   5篇
  1985年   7篇
  1984年   7篇
  1981年   6篇
  1979年   8篇
  1978年   4篇
  1977年   6篇
  1976年   5篇
  1975年   4篇
  1972年   3篇
  1962年   4篇
  1961年   3篇
  1957年   3篇
  1950年   3篇
  1934年   4篇
排序方式: 共有904条查询结果,搜索用时 781 毫秒
111.
112.
113.
Abstract. Fine-scale structure of a species-rich grassland was examined for seasonal changes caused by manipulated changes in the availability of above and below-ground resources (additional illumination with the help of mirrors and fertilization) in a field experiment. If changes induced by fertilization — which are expected to lead to a reduction in small-scale diversity —are due to intensified light competition, they should be compensated for by additional light input. Permanent plots of 40 cm × 40 cm were sampled by the point quadrat method at three angles (60°, 90° and 120° from the horizontal North-South direction), using a laser beam to position the quadrats, in early July and early September. The applied treatments did not cause apparent changes in plant leaf orientation. The degree of spatial aggregation of biomass increased seasonally in fertilized, non-illuminated plots: greater productivity at a constant light supply led to a faster growth rate of potentially dominant species, as compared to the subordinate ones. Additional illumination mitigated this effect of fertilization, indicating that the observed changes in biomass aggregation were due to increased light competition. There was a considerable seasonal decrease of variance ratio (ratio of observed variance of richness at a point and variance expected at random) in fertilized only and in illuminated only plots. In fertilized plots this was due to the positive relationship between biomass aggregation and expected variance of richness. Biomass constancy occurs to be inversely related to deficit in variance of richness. In illuminated plots, in contrast, only the observed variance of richness decreased seasonally, indicating a more uniform use of space by different species. Evidently, a deficit in variance of richness can be caused by drastically different processes, showing that the variance ratio statistic may not have a significant explanatory value in fine-scale community studies.  相似文献   
114.
115.
116.
117.
118.
119.
Visualization of scientific data is crucial not only for scientific discovery but also to communicate science and medicine to both experts and a general audience. Until recently, we have been limited to visualizing the three‐dimensional (3D) world of biology in 2 dimensions. Renderings of 3D cells are still traditionally displayed using two‐dimensional (2D) media, such as on a computer screen or paper. However, the advent of consumer grade virtual reality (VR) headsets such as Oculus Rift and HTC Vive means it is now possible to visualize and interact with scientific data in a 3D virtual world. In addition, new microscopic methods provide an unprecedented opportunity to obtain new 3D data sets. In this perspective article, we highlight how we have used cutting edge imaging techniques to build a 3D virtual model of a cell from serial block‐face scanning electron microscope (SBEM) imaging data. This model allows scientists, students and members of the public to explore and interact with a “real” cell. Early testing of this immersive environment indicates a significant improvement in students’ understanding of cellular processes and points to a new future of learning and public engagement. In addition, we speculate that VR can become a new tool for researchers studying cellular architecture and processes by populating VR models with molecular data.   相似文献   
120.
This study was performed to elucidate the effects of linoleic acid (LA), oleic acid (OA) and their combination (LA?+?OA) on cell proliferation, apoptosis, necrosis, and the lipid metabolism related gene expression in bovine satellite cells (BSCs), isolated from bovine muscles. Cell viability was significantly increased with the OA and LA treatment. Furthermore, LA?+?OA enhanced cell proliferation in a dose-dependent manner (10 to 100?µM), whereas it lowered at 250?µM. In addition, a cell-cycle analysis showed that 100?µM of LA and OA markedly decreased the G0/G1 phase proportion (62.58% and 61.33%, respectively), compared to controls (68.02%), whereas the S-phase cells’ proportion was increased. The ratio of G2/M phase cells was not significantly different among the groups. Moreover, analyses with AO/EtBr staining showed that no apoptosis occurred. Necrosis were determined by flow cytometry using Annexin V-FITC/PI staining which revealed no early apoptosis in the cells pretreated with LA or OA, but occurred in the LA?+?OA group. We also analyzed the mRNA expression of lipid metabolizing genes such as peroxisome proliferator receptor alfa (PPARα), peroxisome proliferator receptor gamma (PPARγ), acyl-CoA oxidase (ACOX), lipoprotein lipase (LPL), carnitine palmitoyl transferase (CPT-1), and fatty-acid binding protein4 (FABP4), which were upregulated in LA or OA treated cells compared to the control group. In essence, LA and OA alone promote the cell proliferation without any apoptosis and necrosis, which might upregulate the lipid metabolism related gene expressions, and increase fatty-acid oxidation in the BSCs’ lipid metabolism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号