全文获取类型
收费全文 | 211篇 |
免费 | 29篇 |
专业分类
240篇 |
出版年
2023年 | 2篇 |
2020年 | 1篇 |
2019年 | 1篇 |
2018年 | 4篇 |
2017年 | 2篇 |
2016年 | 3篇 |
2015年 | 6篇 |
2014年 | 8篇 |
2013年 | 11篇 |
2012年 | 10篇 |
2011年 | 9篇 |
2010年 | 6篇 |
2009年 | 6篇 |
2008年 | 13篇 |
2007年 | 9篇 |
2006年 | 11篇 |
2005年 | 16篇 |
2004年 | 15篇 |
2003年 | 13篇 |
2002年 | 6篇 |
2001年 | 17篇 |
2000年 | 6篇 |
1999年 | 4篇 |
1998年 | 3篇 |
1997年 | 2篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1994年 | 2篇 |
1993年 | 1篇 |
1992年 | 6篇 |
1991年 | 3篇 |
1990年 | 9篇 |
1989年 | 7篇 |
1988年 | 1篇 |
1987年 | 3篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 1篇 |
1982年 | 1篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 1篇 |
1978年 | 2篇 |
1977年 | 3篇 |
排序方式: 共有240条查询结果,搜索用时 15 毫秒
121.
Shih-Horng Huang Jiahn-Chun Wu King-Jen Chang Koung-Yi Liaw Seu-Mei Wang 《Journal of cellular biochemistry》1998,70(3):330-337
E-cadherin is the major cell-cell adhesion molecule expressed by epithelial cells. Cadherins form a complex with three cytoplasmic proteins, α-, β-, and γ-catenin, and the interaction between them is crucial for anchoring the actin cytoskeleton to the intercellular adherens junctions. The invasive behavior of cancer cells has been attributed to a dysfunction of these molecules. In this study, we examined the distribution of the cadherin-catenin complex in a Chinese human thyroid cancer cell line, CGTH W-2, compared with that in normal human thyroid epithelial cells. In the normal cells, using immunofluorescence staining, E-cadherin and α-, β-, and γ-catenin were found to be localized at the intercellular junction and appeared as 135, 102, 90, and 80 kD proteins on Western blots. In CGTH W-2 cells, no E-cadherin and γ-catenin immunoreactivity was detected by immunofluorescence or Western blotting; α- and β-catenin were detected as 102 and 90 kD proteins on blots but gave a diffuse cytoplasmic immunofluorescence staining pattern in most cells, while β-catenin was also distributed throughout the cytoplasm in most cells but was found at the cell junction in some, where it colocalized with α-actinin. The present data indicate that the loss of cell adhesiveness in these cancer cells may be due to incomplete assembly of the cadherin-catenin complex at the cell junction. However, this defect did not affect the linkage of actin bundles to vinculin-enriched intercellular junctions. J. Cell. Biochem. 70:330–337, 1998. © 1998 Wiley-Liss, Inc. 相似文献
122.
123.
Batteries: Predicting Calendar Aging in Lithium Metal Secondary Batteries: The Impacts of Solid Electrolyte Interphase Composition and Stability (Adv. Energy Mater. 26/2018) 下载免费PDF全文
124.
Secondary alcohols were converted to their corresponding esters with N-Cbz-L-amino acids by Celite-immobilized protease or lipase in organic solvents at pH 7.5. The esterification of 2-butanol and 2-phenylethanol were achieved up to 71% yields. The optimal reaction condition for Aspergillus oryzae protease (AOP) catalyzed synthesis of N-Cbz-L-aspartyl- sec-butyl ester (97.6 de) was at pH 7.5 and a duration of 96 hours. 相似文献
125.
126.
127.
128.
Hsu CS Lai WL Chang WW Liaw SH Tsai YC 《Protein science : a publication of the Protein Society》2002,11(11):2545-2550
D-Aminoacylase is an attractive candidate for commercial production of D-amino acids through its catalysis in the zinc-assistant hydrolysis of N-acyl-D-amino acids. We report here the cloning, expression, and structural-based mutation of the D-aminoacylase from Alcaligenes faecalis DA1. A 1,007-bp PCR product amplified with degenerate primers, was used to isolate a 4-kb genomic fragment, encoding a 484-residue D-aminoacylase. The enzyme amino-terminal segment shared significant homology within a variety of enzymes including urease. The structural fold was predicted by 3D-PSSM to be similar to urease and dihydroorotase, which have grouped into a novel alpha/beta-barrel amidohydrolase superfamily with a virtually indistinguishable binuclear metal centers containing six ligands, four histidines, one aspartate, and one carboxylated lysine. Three histidines, His-67, His-69, and His-250, putative metal ligands in D-aminoacylase, have been mutated previously, the remaining histidine (His-220) and aspartate (Asp-366) Asp-65, and four cysteines were then characterized. Substitution of Asp-65, Cys-96, His-220, and Asp-366 with alanine abolished the enzyme activity. The H220A mutant bound approximately half the normal complement of zinc ion as did H250N. However, the C96A mutant showed little zinc-binding ability, revealing that Cys-96 may replace the carboxylated lysine to serve as a bridging ligand. According to the urease structure, the conserved amino-terminal segment including Asp-65 may be responsible for structural stabilization. 相似文献
129.
Upon nematode infection, murine peritoneal macrophages synthesize and secrete large amounts of the Ym1 protein, which is a unique functional marker for alternatively activated macrophages in T(H)2-mediated inflammatory responses. Ym1 shares significant structural similarity to the family 18 chitinases. Previously, Ym1 has been studied with respect to its carbohydrate-binding ability and glycosyl hydrolysis activity and this has led to various inconclusive interpretations. Our present co-crystallization and soaking experiments with various glucosamine or N-acetylglucosamine oligomers yield only the uncomplexed Ym1. The refined Ym1 structure at 1.31A resolution clearly displays a water cluster forming an extensive hydrogen bond network with the "active-site" residues. This water cluster contributes notable electron density to lower resolution maps and this might have misled and given rise to a previous proposal for a monoglucosamine-binding site for Ym1. A structural comparison of family 18 glycosidase (-like) proteins reveals a lack of several conserved residues in Ym1, and illustrates the versatility of the divergent active sites. Therefore, Ym1 may lack N-acetylglucosamine-binding affinity, and this suggests that a new direction should be taken to unravel the function of Ym1. 相似文献
130.
Tyukhtenko SI Litvinchuk AV Chang CF Lo YC Lee SJ Shaw JF Liaw YC Huang TH 《Biochemistry》2003,42(27):8289-8297
Escherichia coli thioesterase/protease I (TEP-I) belongs to a new subclass of lipolytic enzymes of the serine hydrolase superfamily. Here we report the first direct NMR observation of the formation of the Michaelis complex (MC) between TEP-I and diethyl p-nitrophenyl phosphate (DENP), an active site directed inhibitor of serine protease, and its subsequent conversion to the tetrahedral complex (TC). NMR, ESI-MS, and kinetic data showed that DENP binds to TEP-I in a two-step process, a fast formation of MC followed by a slow conversion to TC. NMR chemical shift perturbation further revealed that perturbations were confined mainly to four conserved segments comprising the active site. Comparable magnitudes of chemical shift perturbations were detected in both steps. The largest chemical shift perturbation occurred around the catalytic Ser(10). In MC, the conformation of the mobile Ser(10) was stabilized, and its amide resonance became observable. From the large chemical shift perturbation upon conversion from MC to TC, we propose that the amide protons of Ser(10) and Gly(44) serve as the oxyanion hole proton donors that stabilize the tetrahedral adduct. The pattern of residues perturbed in both steps suggests a sequential, stepwise structural change upon binding of DENP. The present study also demonstrates the important catalytic roles of conserved residues in the SGNH family of proteins. 相似文献