首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   32篇
  2022年   4篇
  2021年   7篇
  2020年   1篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   6篇
  2015年   19篇
  2014年   22篇
  2013年   23篇
  2012年   22篇
  2011年   27篇
  2010年   18篇
  2009年   18篇
  2008年   20篇
  2007年   17篇
  2006年   16篇
  2005年   21篇
  2004年   12篇
  2003年   9篇
  2002年   8篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1997年   2篇
  1993年   1篇
  1974年   2篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
71.
Gene sequence analysis of nirS and nirK, both encoding nitrite reductases, was performed on cultivated denitrifiers to assess their incidence in different bacterial taxa and their taxonomical value. Almost half of the 227 investigated denitrifying strains did not render an nir amplicon with any of five previously described primers. NirK and nirS were found to be prevalent in Alphaproteobacteria and Betaproteobacteria, respectively, nirK was detected in the Firmicutes and Bacteroidetes and nirS and nirK with equal frequency in the Gammaproteobacteria. These observations deviated from the hitherto reported incidence of nir genes in bacterial taxa. NirS gene phylogeny was congruent with the 16S rRNA gene phylogeny on family or genus level, although some strains did group within clusters of other bacterial classes. Phylogenetic nirK gene sequence analysis was incongruent with the 16S rRNA gene phylogeny. NirK sequences were also found to be significantly more similar to nirK sequences from the same habitat than to nirK sequences retrieved from highly related taxa. This study supports the hypothesis that horizontal gene transfer events of denitrification genes have occurred and underlines that denitrification genes should not be linked with organism diversity of denitrifiers in cultivation-independent studies.  相似文献   
72.
PASTICCINO2 (PAS2), a member of the protein Tyr phosphatase-like family, is conserved among all eukaryotes and is characterized by a mutated catalytic site. The cellular functions of the Tyr phosphatase-like proteins are still unknown, even if they are essential in yeast and mammals. Here, we demonstrate that PAS2 interacts with a cyclin-dependent kinase (CDK) that is phosphorylated on Tyr and not with its unphosphorylated isoform. Phosphorylation of the conserved regulatory Tyr-15 is involved in the binding of CDK to PAS2. Loss of the PAS2 function dephosphorylated Arabidopsis thaliana CDKA;1 and upregulated its kinase activity. In accordance with its role as a negative regulator of the cell cycle, overexpression of PAS2 slowed down cell division in suspension cell cultures at the G2-to-M transition and early mitosis and inhibited Arabidopsis seedling growth. The latter was accompanied by altered leaf development and accelerated cotyledon senescence. PAS2 was localized in the cytoplasm of dividing cells but moved into the nucleus upon cell differentiation, suggesting that the balance between cell division and differentiation is regulated through the interaction between CDKA;1 and the antiphosphatase PAS2.  相似文献   
73.
The crystal structure of the Man/Glc-specific seed lectin from Pterocarpus angolensis was determined in complex with methyl-alpha-d-glucose, sucrose, and turanose. The carbohydrate binding site contains a classic Man/Glc type specificity loop. Its metal binding loop on the other hand is of the long type, different from what is observed in other Man/Glc-specific legume lectins. Glucose binding in the primary binding site is reminiscent of the glucose complexes of concanavalin A and lentil lectin. Sucrose is found to be bound in a conformation similar as seen in the binding site of lentil lectin. A direct hydrogen bond between Ser-137(OG) to Fru(O2) in Pterocarpus angolensis lectin replaces a water-mediated interaction in the equivalent complex of lentil lectin. In the turanose complex, the binding site of the first molecule in the asymmetric unit contains the alphaGlc1-3betaFruf form of furanose while the second molecule contains the alphaGlc1-3betaFrup form in its binding site.  相似文献   
74.
The neglected tropical disease onchocerciasis, or river blindness, is caused by infection with the filarial nematode Onchocerca volvulus. Current estimates indicate that 17 million people are infected worldwide, the majority of them living in Africa. Today there are no non-invasive tests available that can detect ongoing infection, and that can be used for effective monitoring of elimination programs. In addition, to enable pharmacodynamic studies with novel macrofilaricide drug candidates, surrogate endpoints and efficacy biomarkers are needed but are non-existent. We describe the use of a multimodal untargeted mass spectrometry-based approach (metabolomics and lipidomics) to identify onchocerciasis-associated metabolites in urine and plasma, and of specific lipid features in plasma of infected individuals (O. volvulus infected cases: 68 individuals with palpable nodules; lymphatic filariasis cases: 8 individuals; non-endemic controls: 20 individuals). This work resulted in the identification of elevated concentrations of the plasma metabolites inosine and hypoxanthine as biomarkers for filarial infection, and of the urine metabolite cis-cinnamoylglycine (CCG) as biomarker for O. volvulus. During the targeted validation study, metabolite-specific cutoffs were determined (inosine: 34.2 ng/ml; hypoxanthine: 1380 ng/ml; CCG: 29.7 ng/ml) and sensitivity and specificity profiles were established. Subsequent evaluation of these biomarkers in a non-endemic population from a different geographical region invalidated the urine metabolite CCG as biomarker for O. volvulus. The plasma metabolites inosine and hypoxanthine were confirmed as biomarkers for filarial infection. With the availability of targeted LC-MS procedures, the full potential of these 2 biomarkers in macrofilaricide clinical trials, MDA efficacy surveys, and epidemiological transmission studies can be investigated.  相似文献   
75.
76.
Dk1 and Dk2 are two catalytically proficient, manganese-dependent, guanine-rich deoxyribozymes previously isolated for DNA phosphorylation. In this study, we carried out a series of experiments that aimed to understand the structural properties of Dk1 and Dk2 and compare the structural similarities or differences of these two distinct deoxyribozymes that carry out similar catalytic functions. First, we performed reselections from two partially randomized DNA libraries on the basis of the original Dk1 and Dk2 sequences to isolate catalytically active sequence variants and identify nucleotides that are invariable, well-conserved, or highly mutagenized. Sequence analysis of these variants assisted by secondary-structure predictions led to the identification of possible Watson-Crick base-pairing regions within each deoxyribozyme. Sequence truncation and base-pair partner exchange experiments were conducted to confirm, or rule out, the existence of the predicted secondary-structure elements. Finally, methylation interference experiments were applied to identify nucleotides that are potentially important for the tertiary structure folding of the deoxyribozymes. Our data suggest that Dk1 and Dk2, despite the differences in their primary sequences and NTP requirements, use an analogous stem-loop element to anchor a structural domain of substantial tertiary interactions to execute their catalytic functions.  相似文献   
77.
78.
Broad screening revealed compound 1a to be a novel anti-fungal agent with high specificity towards dermatophytes. The anti-fungal structure-activity relationship of this novel class of 5,6-dihydro-4H-pyrrolo[1,2-a][1,4]benzodiazepines is described together with its mode of action that appeared to be the inhibition of squalene epoxidase. Preliminary in vivo results of the most active compounds are also reported.  相似文献   
79.
80.
Organ growth results from the progression of component cells through subsequent phases of proliferation and expansion before reaching maturity. We combined kinematic analysis, flowcytometry, and microarray analysis to characterize cell cycle regulation during the growth process of leaves 1 and 2 of Arabidopsis (Arabidopsis thaliana). Kinematic analysis showed that the epidermis proliferates until day 12; thereafter, cells expand until day 19 when leaves reach maturity. Flowcytometry revealed that endoreduplication occurs from the time cell division rates decline until the end of cell expansion. Analysis of 10 time points with a 6k-cDNA microarray showed that transitions between the growth stages were closely reflected in the mRNA expression data. Subsequent genome-wide microarray analysis on the three main stages allowed us to categorize known cell cycle genes into three major classes: constitutively expressed, proliferative, and inhibitory. Comparison with published expression data obtained from root zones corresponding to similar developmental stages and from synchronized cell cultures supported this categorization and enabled us to identify a high confidence set of 131 proliferation genes. Most of those had an M phase-dependent expression pattern and, in addition to many known cell cycle-related genes, there were at least 90 that were unknown or previously not associated with proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号