The vast majority of parasites exhibit an aggregated frequency distribution within their host population, such that most hosts have few or no parasites while only a minority of hosts are heavily infected. One exception to this rule is the trophically transmitted parasite Pterygodermatites peromysci of the white-footed mouse (Peromyscus leucopus), which is randomly distributed within its host population. Here, we ask: what are the factors generating the random distribution of parasites in this system when the majority of macroparasites exhibit non-random patterns? We hypothesise that tight density-dependent processes constrain parasite establishment and survival, preventing the build-up of parasites within individual hosts, and preclude aggregation within the host population. We first conducted primary infections in a laboratory experiment using white-footed mice to test for density-dependent parasite establishment and survival of adult worms. Secondary or challenge infection experiments were then conducted to investigate underlying mechanisms, including intra-specific competition and host-mediated restrictions (i.e. acquired immunity). The results of our experimental infections show a dose-dependent constraint on within-host-parasite establishment, such that the proportion of mice infected rose initially with exposure, and then dropped off at the highest dose. Additional evidence of density-dependent competition comes from the decrease in worm length with increasing levels of exposure. In the challenge infection experiment, previous exposure to parasites resulted in a lower prevalence and intensity of infection compared with primary infection of naïve mice; the magnitude of this effect was also density-dependent. Host immune response (IgG levels) increased with the level of exposure, but decreased with the number of worms established. Our results suggest that strong intra-specific competition and acquired host immunity operate in a density-dependent manner to constrain parasite establishment, driving down aggregation and ultimately accounting for the observed random distribution of parasites. 相似文献
In this investigation, detection dogs are trained and used in identifying red imported fire ants, Solenopsis invicta Buren, and their nests. The methodology could assist in reducing the frequency and scope of chemical treatments for red imported fire ant management and thus reduce labor costs and chemical use as well as improve control and quarantine efficiency. Three dogs previously trained for customs quarantine were retrained to detect the scents of red imported fire ants. After passing tests involving different numbers of live red imported fire ants and three other ant species--Crematogaster rogenhoferi Mayr, Paratrechina longicornis Latreille, and Pheidole megacephala F.--placed in containers, ajoint field survey for red imported fire ant nests by detection dogs and bait traps was conducted to demonstrate their use as a supplement to conventional detection methods. The most significant findings in this report are (1) with 10 or more red imported fire ants in scent containers, the dogs had >98% chance in tracing the red imported fire ant. Upon the introduction of other ant species, the dogs still achieved on average, a 93% correct red imported fire ant indication rate. Moreover, the dogs demonstrated great competence in pinpointing emerging and smaller red imported fire ant nests in red imported fire ant-infested areas that had been previously confirmed by bait trap stations. (2) Along with the bait trap method, we also discovered that approximately 90% of red imported fire ants foraged within a distance of 14 m away from their nests. The results prove detection dogs to be most effective for red imported fire ant control in areas that have been previously treated with pesticides and therefore containing a low density of remaining red imported fire ant nests. Furthermore, as a complement to other red imported fire ant monitoring methods, this strategy will significantly increase the efficacy of red imported fire ant control in cases of individual mount treatment. 相似文献
1. Oat chloroplasts, in the presence of 0.02 M methylamine, reduce 2,6 dichlorophenolindophenol (DCIP) at a rate of 350–500 μmoles/mg chl per h, in saturating light. Brief sonication for approx. 1 min lowers the rate to approx. 50 μmoles/mg chl per h; longer sonication does not reduce activity further. During brief sonication, plastocyanin is lost from the chloroplasts. When plastocyanin is added back to sonicated fragments, DCIP reduction is approximately doubled to 100 μmoles/mg chl per h.
2. When oxidized plastocyanin is added, a transient is observed when light is first turned on: this is due to a reduction of the plastocyanin before DCIP reduction begins. When reduced plastocyanin is added, a different transient occurs: this is due to a fast photoreduction of DCIP by the plastocyanin and is followed by the slower steady state reduction of DCIP by water. When light is turned off before complete reduction of DCIP, a transient reduction of oxidized plastocyanin by reduced DCIP is seen. Insensitivity of these transients to 3(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) and the greater effectiveness of 710 nm light, along with the known capacity of plastocyanin to mediate electron transfer to System I, prove that an intrinsically fast reduction of DCIP occurs at a site close to the primary photoreduced product of System I.
3. After brief sonication and washing, no residual plastocyanin was detected in chloroplast fragments, and the rate of the slow DCIP reduction (about 50μmoles/mg chl per h) sustained by such fragments was essentially identical to that maintained by fragments of mutants lacking System I activity. Following
et al.9, the simplest explanation for this slow DCIP reduction is that is occurs at a site close to System II and the system I is not involved.
4. A very slow transient reduction of DCIP occurs after extinguishing light; this presumably involves another reduction site close to System II, as suggested by
9. 相似文献
Weaning represents the transition of mammalian life from maternal dependence to independence in both energetics and behavior. The length at weaning (Lw) is determined by the maternal investment during gestation and lactation. It affects calf survival and impacts on the long‐term persistence of species, but the measurement is not readily obtainable for many cetaceans. A general linear model and residual correlation were used to explore the correlations between the published Lw and five other life history traits of cetaceans, including female asymptotic length (Lx), length at birth (Lb), lactation period (LP), gestation period (GP), and calving interval (CI). Lx was a significant confounding parameter on the other five traits. By eliminating the confounding Lx, ANCOVA revealed that baleen whales (Mysticeti) and toothed cetaceans (Odontoceti) had comparable Lw. By residual correlation, which factors the confounding Lx, Lw was significantly correlated with Lb but not with GP, LP, and CI. After Lb was further eliminated, convergent Lw in cetaceans could still be observed. Therefore, we proposed a generic expression Lw= 1.239Lx0.877, which allows us to further estimate Lw of undocumented cetacean species. 相似文献
Pacific white shrimp (Litopenaeus vannamei) were injected with Taura syndrome virus (TSV) to assess shrimp immune responses and survival. TSV-infected shrimp suffered high mortality, but mock-infected and untreated shrimp experienced no mortality. Moribund shrimp were a pale, reddish colour and were lethargic and soft-shelled. Their haemolymph was clear red and coagulated poorly. In TSV-infected shrimp, the total haemocyte count (THC), hyalinocyte and granulocyte counts, and total plasma protein decreased significantly to 21%, 24%, 17% and 56% of untreated control values, respectively. Haemocyanin decreased to 67%, and clottable proteins to 80% of control values (P< 0.01). Copper and calcium ions, haemocytic transglutaminase (TGase) activity and plasma growth inhibitory activity against Vibrio harveyi also decreased significantly. Generation of intrahaemocytic superoxide anion, O(-2), in TSV-infected shrimp was significantly greater (P< 0.05) than in both control groups, no matter whether glucan stimulated or unstimulated. But the relative increase of intrahaemocytic O(-2) generation in TSV-infected shrimp response to glucan stimulation was lower in both controls. Plasma phenoloxidase (PO) activity increased significantly in TSV-infected shrimp. The plasma bacterial agglutinin titre against E. coli and V. harveyi, growth inhibition of E. coli and the concentration of magnesium ions in TSV-infected shrimp did not change significantly.In conclusion, ten of thirteen haemolymph parameters changed significantly during the host-TSV interaction. These parameters might be valuable references of shrimp health status. 相似文献