首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1123篇
  免费   172篇
  国内免费   1篇
  2021年   21篇
  2020年   19篇
  2019年   43篇
  2018年   41篇
  2016年   23篇
  2015年   20篇
  2014年   24篇
  2013年   42篇
  2012年   37篇
  2011年   40篇
  2010年   34篇
  2009年   21篇
  2008年   32篇
  2007年   37篇
  2006年   39篇
  2005年   32篇
  2004年   26篇
  2003年   30篇
  2002年   29篇
  2001年   38篇
  2000年   32篇
  1999年   24篇
  1998年   22篇
  1996年   31篇
  1995年   20篇
  1994年   16篇
  1993年   18篇
  1992年   25篇
  1991年   18篇
  1990年   19篇
  1989年   23篇
  1988年   20篇
  1987年   25篇
  1986年   13篇
  1985年   22篇
  1984年   21篇
  1983年   18篇
  1982年   21篇
  1981年   17篇
  1980年   13篇
  1979年   27篇
  1978年   23篇
  1977年   19篇
  1975年   12篇
  1974年   15篇
  1973年   19篇
  1971年   16篇
  1970年   13篇
  1967年   16篇
  1965年   12篇
排序方式: 共有1296条查询结果,搜索用时 406 毫秒
91.
92.
93.
Selective neuronal vulnerability is characteristic of most degenerative disorders of the CNS, yet mechanisms underlying this phenomenon remain poorly characterized. Many forms of cerebellar degeneration exhibit an anterior-to-posterior gradient of Purkinje cell loss including Niemann-Pick type C1 (NPC) disease, a lysosomal storage disorder characterized by progressive neurological deficits that often begin in childhood. Here, we sought to identify candidate genes underlying vulnerability of Purkinje cells in anterior cerebellar lobules using data freely available in the Allen Brain Atlas. This approach led to the identification of 16 candidate neuroprotective or susceptibility genes. We demonstrate that one candidate gene, heat shock protein beta-1 (HSPB1), promoted neuronal survival in cellular models of NPC disease through a mechanism that involved inhibition of apoptosis. Additionally, we show that over-expression of wild type HSPB1 or a phosphomimetic mutant in NPC mice slowed the progression of motor impairment and diminished cerebellar Purkinje cell loss. We confirmed the modulatory effect of Hspb1 on Purkinje cell degeneration in vivo, as knockdown by Hspb1 shRNA significantly enhanced neuron loss. These results suggest that strategies to promote HSPB1 activity may slow the rate of cerebellar degeneration in NPC disease and highlight the use of bioinformatics tools to uncover pathways leading to neuronal protection in neurodegenerative disorders.  相似文献   
94.
Epstein-Barr virus (EBV) is a human herpesvirus that infects over 90% of the world's population that persists as a latent infection in various lymphoid and epithelial malignancies. The total number of EBV associated malignancies is estimated to exceed 200,000 new cancers per year. Current chemotherapeutic treatments of EBV-positive cancers include broad-spectrum cytotoxic drugs that ignore the EBV positive status of tumors and have limited safety and selectivity. In an effort to develop new and more efficacious molecules for inducing EBV reactivation, we have developed high-throughput screening assays to identify a class of small molecules (referred to as the C60 series) that efficiently activate the EBV lytic cycle in multiple latency types, including lymphoblastoid and nasopharyngeal carcinoma cell lines. In this paper we report our preliminary structure activity relationship studies and demonstrate reactivation of EBV in the SNU719 gastric carcinoma mouse model and the AGS-Akata gastric carcinoma mouse model.  相似文献   
95.
The effective treatment of urethral stricture remains a medical problem. The use of proinflammatory cytokines as stimuli to improve the reparative efficacy of mesenchymal stem cells (MSCs) towards damaged tissues represents an evolving field of investigation. However, the therapeutic benefits of this strategy in the treatment of urethral stricture remain unknown. Here, we enriched exosomes derived from human umbilical cord-derived MSCs pretreated with or without tumor necrosis factor alpha (TNF-α) to evaluate their therapeutic effects in an in vivo model of TGFβ1-induced urethral stricture. Male Sprague-Dawley rats received sham (saline) or TGFβ1 injections to urethral tissues followed by incisions in the urethra. Animals in the TGFβ1 injection (urethral fibrosis) cohort were subsequently injected with vehicle control, or with exosomes derived from MSCs cultured with or without TNF-α. After 4 weeks, rats underwent ultrasound evaluation and, following euthanasia, urethral tissues were harvested for histological and molecular analysis. In vitro, the effects of MSC-derived exosomes on fibroblast secretion of collagen and cytokines were studied by enzyme-linked immunosorbent assay (ELISA), quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. Exosomes derived from MSCs pretreated with TNF-α were more effective in suppressing urethral fibrosis and stricture than exosomes from untreated MSCs. We found that miR-146a, an anti-inflammatory miRNA, was strongly upregulated in TNF-α-stimulated MSCs and was selectively packaged into exosomes. Moreover, miR-146a-containing exosomes were taken up by fibroblasts and inhibited fibroblast activation and associated inflammatory responses, a finding that may underlie the therapeutic mechanism for suppression of urethral stricture. Inhibition of miR-146a in TNF-α-treated MSCs partially reduced antifibrotic effects and increased the release of proinflammatory factors of exosomes derived from these cells. Together these findings demonstrate that exosomes derived from TNF-α-treated MSCs are of therapeutic benefit in urethral fibrosis, suggesting that this strategy may have utility as an adjuvant therapy in the treatment of urethral stricture diseases.  相似文献   
96.
Mycopathologia - Medicopsis species are rare fungal pathogens that frequently resist common antifungal therapies and are difficult to identify morphologically as conidia are produced in pycnidia, a...  相似文献   
97.
98.
In varicose veins, vascular smooth muscle cells (VSMCs) often show abnormal proliferative and migratory rates and phenotypic transition. This study aimed to investigate whether microRNA (miR)-202 and its potential target, peroxisome proliferator–activated receptor-γ coactivator-1α (PGC-1α), were involved in VSMC phenotypic transition. miR-202 expression was analyzed in varicose veins and in VSMCs conditioned with platelet-derived growth factor. The effect of miR-202 on cell proliferation and migration was assessed. Furthermore, contractile marker SM-22α, synthetic markers vimentin and collagen I, and PGC-1α were analyzed by Western blot analysis. The modulation of PGC-1α expression by miR-202 was also evaluated. In varicose veins and proliferative VSMCs, miR-202 expression was upregulated, with decreased SM-22α expression and increased vimentin and collagen I expression. Transfection with a miR-202 mimic induced VSMC proliferation and migration, whereas a miR-202 inhibitor reduced cell proliferation and migration. miR-202 mimic constrained luciferase activity in HEK293 cells that were cotransfected with the PGC-1α 3′-untranslated region (3′-UTR) but not those with mutated 3′-UTR. miR-202 suppressed PGC-1α protein expression, with no influence on its messenger RNA expression. PGC-1α mediated VSMC phenotypic transition and was correlated with reactive oxygen species production. In conclusion, miR-202 affects VSMC phenotypic transition by targeting PGC-1α expression, providing a novel target for varicose vein therapy.  相似文献   
99.
100.
The genetic etiology of adolescent idiopathic scoliosis (AIS) remains obscure. Whole-genome sequencing was performed in four members of one family. Then, we performed a rigorous computational analysis to determine the deleterious effects of the identified variants. Furthermore, the structural differences between the native hepatocyte growth factor (HGF) protein and a protein encoded by an HGF variant containing one mutation (p.T596M) were analyzed using molecular dynamic stimulation. A novel heterozygous mutation (p.T596M) within the HGF gene was identified and found to cosegregate with scoliosis phenotypes in three affected family members. Subsequent modeling and structure-based analyses supported the theory that this mutation is functionally deleterious. Functional analyses demonstrated that the HGF p.T596 M mutation changed the ability of the HGF protein to be secreted and impaired migration and invasion in HEK293T cells. Furthermore, an HGF knockdown zebrafish model exhibited a curly tailed phenotype. Mutation in HGF is associated with an autosomal dominant pattern of inheritance of AIS. This finding increases our understanding of the genetic heterogeneity of AIS.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号